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Abstract

We propose a method to estimate static discrete games with weak assumptions on
the information available to players. We do not fully specify the information structure of
the game, but allow instead for all information structures consistent with players know-
ing their own payoffs. To make this approach tractable we adopt as a solution concept
Bayes Correlated Equilibrium (BCE) (Bergemann and Morris, 2016). We characterize
the sharp identified set under BCE and unrestricted equilibrium selection, and find that
in simple games with limited variation in covariates identified sets are informative. In
an application, we estimate a model of entry in the Italian supermarket industry and
quantify the effect of large malls on local supermarkets. Estimates and predictions differ
from those obtained under more restrictive assumptions.
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1 Introduction

Empirical models of static discrete games are important tools in industrial organiza-
tion (IO), as they allow researchers to recover the determinants of firms’ behavior while
accounting for the strategic nature of firms’ choices. Models in this class have been applied
in contexts such as entry, product or location choice, advertising, and technology adop-
tion.1 Game-theoretic models’ equilibrium predictions, and thus the map between the data
and parameters of interest, depend crucially on the information that players have on each
other’s payoffs. However, the nature of firms’ information about their competitors is often
ambiguous in applications. Restrictive assumptions, when not satisfied in the application
at hand, may result in inconsistent estimates of the payoff structure of the game.

We propose a new method to estimate the distribution of players’ payoffs relying only on
assumptions on the minimal information players have. In particular, we assume that players
know at least their own payoffs, the distribution of opponents payoffs, parameters and
observable covariates. We admit any information structure that satisfies these assumptions.
Our model is thus incomplete, in the spirit of Manski (2003), Tamer (2003), and Haile
and Tamer (2003). More precisely, our model may produce any prediction that results
from a Bayes Nash Equilibrium (BNE) under an admissible information structure, without
assumptions on equilibrium selection. Our object of interest is the set of parameters that
are identified given this incomplete model.

Our method nests the two main approaches in the existing literature: complete informa-
tion, adopted by the pioneering work in this area (Bjorn and Vuong, 1984; Jovanovic, 1989;
Bresnahan and Reiss, 1991a; Berry, 1992), and private information (Seim, 2006; de Paula
and Tang, 2012). It also nests the class of information structures considered by Grieco
(2014). Moreover, our model is flexible in other dimensions: the information structure of
the game may vary across markets and be asymmetric across agents.

To make this approach tractable, we rely on the connection between equilibrium behav-
ior and information, and adopt Bayes Correlated Equilibrium (BCE) as solution concept.
BCE, introduced by Bergemann and Morris (2013, 2016), has the property of describing
BNE predictions for a range of information structures. We show that, for every vector of
parameters in the identified set under BCE, there exists an admissible information structure
and a BNE that deliver predictions compatible with the data. Exploiting the convexity of
the set of equilibria, we also provide a tractable characterization of the sharp identified
set of parameters. These results motivate the use of BCE to estimate the distribution of
players’ payoffs while being agnostic with respect to the information structure.

Weaker assumptions yield weaker identification. We investigate the identification power
1See e.g., Bresnahan and Reiss (1991b), Berry (1992), Jia (2008), Ciliberto and Tamer (2009) for entry, Seim (2006)

for product choice, Sweeting (2009) for advertising, Ackerberg and Gowrisankaran (2006) for technology adoption.
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of BCE in simple entry games with linear payoffs and find that the identified sets are infor-
mative about the model’s primitives. Point identification is obtained under the assumption
of full-support variation in excluded covariates, as in Tamer (2003). More generally, the
payoff parameters and of the joint distribution of payoff types are set identified. We perform
inference as in Chernozhukov, Hong, and Tamer (2007).

We apply our method to the investigation of the effect of large malls on supermarkets
in Italy. The discussion on the impact of these big outlets echoes the US debate on “Wal-
Mart effects.” Advocates of stricter regulation of large retailers claim that the superstores
in malls drive out existing supermarkets, leaving consumers without local stores. Economic
theory (e.g., Zhu, Singh, and Dukes, 2011) and evidence from other markets suggest instead
that supermarkets may benefit from the agglomeration economies created by the mall, or
be differentiated enough not to compete with the mall’s grocery anchor.

We estimate a static entry game using our method, and find mixed evidence on the effect
of large malls on supermarkets. For all players in the industry the competition from a rival
supermarket group seems to have a larger effect on profits than the competition from malls
has. This is consistent with a substantial degree of differentiation between malls and local
supermarkets, and thus a limited effect of malls on the availability of grocery stores. Our
findings are in line with existing studies that have found a limited impact of supercenters
on entry by small grocery retailers in the US (Ellickson and Grieco, 2013).

We compare these estimates with those obtained using a model of complete informa-
tion. Results differ in important ways: high values (in absolute value) of competitive effects
are rejected under strong assumptions on information, but not with our method. This is
because the assumption of complete information imposes that players fully anticipate com-
petitors’ decisions. As a consequence, the more restrictive complete information model may
lead to underestimate how much players’ profits are affected by the presence of competitors
in a market.

In a policy experiment, we evaluate the effect on market structure of removing large
malls from markets that currently have no other supermarket. Under weak assumptions on
information, we find that the absence of the mall may or may not foster the emergence of a
market structure with at least two competing industry players. The model with complete
information predicts instead that removing large malls results in a substantial increase in
the average maximal probability2 of observing at least two entrants. In this application,
a model with restrictive assumptions on information leads us to strong conclusions, which
are dispelled by more robust methods.

This article contributes to the literature on identification and estimation of static dis-
2As our model does not yield a unique prediction, we follow Ciliberto and Tamer (2009) in reporting the average

across markets and the maximum over equilibrium selections of the probability of market structure outcomes.
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crete games, surveyed by de Paula (2013). We follow Tamer (2003) and Berry and Tamer
(2006) by not restricting equilibrium selection and allowing for set identification of param-
eters. We also rely on ideas in Beresteanu, Molchanov, and Molinari (2011), who provide a
useful characterization of the sharp identified set for game-theoretic models.

Several existing articles relax the standard assumptions of either complete or perfectly
private information. Aguirregabiria and Mira (2007) study a dynamic game which includes
public, finite support state variables and private payoff types. Grieco (2014) defines a
parametric class of flexible information structures for static games where players receive
both public and private signals.3 We adopt a complementary approach by imposing weaker
assumptions on information, but without achieving in general point identification, nor es-
timating the information structure.

We build on the work of Bergemann and Morris (2013, 2016). They define the equi-
librium concept used in this article and describe its robust prediction property.4 Their
theoretical characterization inspires our use of a similarly robust framework in empirical
applications. More recently, Bergemann, Brooks, and Morris (2022) show how to perform
counterfactual analysis under a fixed latent information structure. We use their method in
our policy experiment, finding that it can help to obtain sharper predictions.

Aradillas-Lopez and Tamer (2008) study identification under rationalizability. Our ap-
proach is neither more general nor more restrictive than theirs, as they relax the equilibrium
assumption, but impose restrictive assumptions on information. Yang (2009) estimates pay-
offs parameters in discrete games of complete information using the non-sharp restrictions
imposed by correlated equilibrium to simplify computation. The assumption of correlated
equilibrium under complete information is nested in our approach. Beyond discrete games,
Bergemann, Brooks, and Morris (2017) characterize BCEs of first-price auctions, Syrgkanis,
Tamer, and Ziani (2018) use BCE to perform inference in this class of models, and Gualdani
and Sinha (2019) study identification and inference in single-agent discrete choice models
using BCE.

Our application is related to studies that model market structure to examine the effect
of entry of large store formats - especially Wal-Mart in the US - on other retailers, such
as Jia (2008) and Arcidiacono, Bayer, Blevins, and Ellickson (2016). In a related article
(Magnolfi and Roncoroni, 2016) we study the role of political connections in shaping market
structure in the Italian supermarket industry.

The structure of the article is as follows. In Section 2 we define a class of a discrete
games, and in Section 3 we discuss identification in this class of models. In Section 4

3Other studies that go beyond complete or perfectly private information include Bajari, Hahn, Hong, and Ridder
(2011), Hu and Shum (2013), Igami and Yang (2016), Aguirregabiria and Mira (2019) and Marcoux (2020).

4Bergemann and Morris (2013) also discuss identification in the context of games with a continuum of players,
symmetric quadratic payoff functions, and normally distributed uncertainty.
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we describe how to compute and estimate the identified set. In Section 5 we illustrate the
informativeness of our identified set. In Sections 6 and 7 we develop the empirical application
and present our policy experiment. Section 8 concludes. All proofs are in Appendix B.

2 Model

We outline the general class of discrete games that we consider in this article, and then
develop our leading example: a two-player entry game.

2.1 A General Empirical Discrete Game

We consider a class of static games, indexed by realizations of covariates x ∈ X. LetN =
{1, ..., n} be the finite set of players; each player i ∈ N chooses an action yi from the finite set
Yi. Both the actions’ space Y = ×i∈NYi and N are the same across different games. We out-
line the other primitives of the game in the next subsections, describing separately the payoff
structure and the information structure. The game is common knowledge among players.

2.1.1 Payoff Structure

Each player i is characterized by a payoff type εi ∈ Ei.5 Payoff types ε = (ε1, . . . , εn)
are distributed according to the cdf F (·; θε), parametrized by the finite dimensional vector
θε ∈ Θε. We also refer to F as players’ prior. Payoffs to player i, denoted by πi, depend
on her payoff type and on action profiles. Observable covariates x and finite dimensional
payoff parameters θπ ∈ Θπ also affect payoffs. The payoff function πi, for any pair (x, θπ),
is πi(·;x, θπ) : Y × Ei → R. A realization of x and a vector of parameters θ = (θπ, θε) ∈ Θ
pin down a payoff structure. Throughout the article we assume that ε is independent of x.

Example 1. Consider a game of oligopoly entry as in Bresnahan and Reiss (1991a). Players
are firms that can either “Enter” or “Not enter” a market; these actions correspond to yi = 1
and yi = 0, respectively. Researchers observe firms making entry decisions in a cross-section
of markets characterized by covariates x. Firms earn a profit of zero by not entering; when
entering, firm i’s profits are πi(y, εi;x, θπ) = Πi(y−i;x, θπ) + εi. The additive εi represents
factors that affect firms’ profits or fixed costs and are unobservable to a researcher.

2.1.2 Information Structure

Every player i knows her payoff type εi, as well as parameters θ and covariates x, but may
not observe ε−i. To model this uncertainty, we assume that in each game with covariates x
players receive a private signal τxi = (εi, τ̃xi ). Hence players observe the realization of their

5The payoff type for player i need not be a scalar, although we mostly focus on examples with scalar payoff types.
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own εi, and an additional random τ̃xi that may carry information on the opponents’ payoff
types ε−i. An information structure Sx specifies the set of signals a player may receive and
the probability of receiving them. Formally:

Sx =
(
T x,

{
P xτ̃ |ε : ε ∈ E

})
,

where T x = E×T̃ x and T̃ x is a complete, separable metric space that represents the support
of the vector of additional signals τ̃x = (τ̃x1 , . . . , τ̃xn ). The uncertainty on signal realizations
is modeled by the probability kernel {P xτ̃ |ε : ε ∈ E}, which contains the distributions of τ̃x

conditional on all realizations of ε. Signals need not have the same marginal distribution
for each player, and may be correlated across players.

Sets and distributions of signals depend on x because the information structure may
change with covariates. We denote as S = (Sx)x∈X the array that includes information
structures for all realizations of x: a generic S provides to players, who know their own εi,
additional signals τ̃x for each x. The set S contains all such information structures:

S =
{
S : ∀x ∈ X, T x=E × T̃ x for T̃ x complete, separable metric space, P xτ̃ |ε ∈ PT̃x

}
,

where PT̃x is the set of all probability distributions on T̃ x.

Example 2. (Example 1 continued) In Bresnahan and Reiss (1991a) firm i not only observes
its own payoff type εi, but also observes ε−i = (ε1, . . . , εi−1, εi+1, . . . , εn), the payoff types of
rival potential entrants. The information structure is hence complete information, denoted
by S. The additional signal space coincides with the opponents’ type space, or T̃ xi = E−i,
and players observe perfectly informative signals: P xτ̃i|ε([τ̃i = ε−i]) = 1 for all x ∈ X, i ∈ N .

2.1.3 Equilibrium

The parameter vector θ and the information structure S characterize a game Γx(θ, S)
for every x. To specify the data-generating process (DGP), linking primitives of the game to
outcomes y, we need an equilibrium notion. We describe strategies for player i as functions
σi : Ei × T̃ xi → PYi , which map payoff types and signals into distributions over actions, and
adopt as a solution concept the standard notion of Bayes Nash Equilibrium.

Definition 1. (Bayes Nash Equilibrium) A strategy profile σ = (σ1, . . . , σn) is a Bayes
Nash Equilibrium (BNE) of the game Γx(θ, S) if for every i ∈ N, εi ∈ Ei and τ̃i ∈ T̃ xi ,
whenever for some yi ∈ Yi the corresponding σi(yi | εi, τ̃i) > 0, then

Eσ−i [πi (yi, y−i, εi;x, θπ) | εi, τ̃i] ≥ Eσ−i
[
πi
(
y′i, y−i, εi;x, θπ

)
| εi, τ̃i

]
, ∀ y′i ∈ Yi,
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where the expectation of y−i is taken with respect to σ−i(y−i | εj , τ̃j) = Πj 6=iσj(yj | εj , τ̃j).6

The information structure has important implications for Bayes Nash equilibrium. When
players receive informative signals on their opponents’ payoff types, their beliefs and hence
their equilibrium actions reflect this information. The more informative the signals that
player i receives about ε−i, the more we expect player i’s actions to vary with ε−i. Con-
versely, players who receive uninformative signals only base their actions on their prior. We
denote as BNEx(θ, S) the set of all BNE strategy profiles for Γx(θ, S).

In addition to BNE, we also introduce the notion of Bayes Correlated Equilibrium
(BCE), due to Bergemann and Morris (2013, 2016).

Definition 2. (BCE) A Bayes Correlated Equilibrium ν ∈ PY,E,T̃ for the game Γx(θ, S) is
a probability measure ν over action profiles, payoff types, and signals that is:

1. Consistent with the prior : for all ε ∈ E , τ̃ ∈ T̃ ,

∑
y∈Y

∫
[t≤τ̃ ]

∫
[e≤ε]

ν (y, e, t) dtde =
∫

[t≤τ̃ ]

∫
[e≤ε]

Pτ̃ |e(t)dF (e; θε) dt;

2. Incentive Compatible: for all i, εi, τ̃i, yi such that ν (yi | εi, τ̃i) > 0,

Eν [πi (yi, y−i, εi;x, θπ) | yi, εi, τ̃i] ≥ Eν
[
πi
(
y′i, y−i, εi;x, θπ

)
| yi, εi, τ̃i

]
, ∀y′i ∈ Yi,

where the expectation Eν [· | yi, εi, τ̃i] is taken with respect to ν(y−i, ε−i, τ̃−i | yi, εi, τ̃i).

BCE is a generalization of Correlated Equilibrium (Aumann, 1974, 1987) to an incom-
plete information environment. A BCE is defined as a probability measure ν over outcomes,
signals and payoff types.7 This is in contrast to BNE, defined as a strategy profile. We
denote as BCEx(θ, S) the set of all BCE distributions for Γx(θ, S).

The consistency property of BCE requires ν (through its marginal over payoff types)
to reflect common knowledge of the prior distribution of ε. The incentive compatibility
property may be illustrated with the mediator metaphor: players receive payoff type- and
signal-dependent recommendations from an omniscient mediator, and in equilibrium it is
optimal for them to follow these recommendations. Whereas the product structure of BNE

6The conditional expectation Eσ−i with respect to the posterior distribution σ−i(y−i | εj , τ̃j) is:

Eσ−i [πi (yi, y−i, εi;x, θπ) | εi, τ̃i] =∑
y−i∈Y−i

∫
E−i

∫
T̃x
−i

πi (yi, y−i, εi;x, θπ)
(
Πj 6=iσj (yj |εj , τ̃j)

)
Pxτ̃−i|ε (dτ̃−i|εi, ε−i) dF (ε−i|εi; θε) .

7Throughout the article we also use the symbol ν for conditional distributions derived from the joint measure. For
instance, in the incentive compatibility condition of Definition 2 we use the symbol ν to represent νy−i,ε−i,τ̃−i|yi,εi,τ̃i

.
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implies that correlation in players’ actions may only stem from correlation in payoffs or
signals, BCE may feature correlation in behavior due to mediator recommendations.

Example 3. (Example 1 continued) In the oligopoly entry game of complete information,
if a BNE strategy σ prescribes that firm i enters a market, entry must be optimal given the
firm’s knowledge of ε and equilibrium expectations, or Eσ[Πi(y−i;x, θπ) | ε] ≥ −εi. BCEs
are instead distributions over (Y × E) whose marginal over payoff types coincides with the
common prior, and such that whenever entry is recommended with a positive probability,
or ν(yi = 1 | ε) > 0, then it must be Eν [Πi(y−i, εi;x, θπ) | yi = 1, ε] ≥ −εi for all i, ε.

2.2 Illustration: the Two-player Entry Game

We introduce here our leading example, also related to the application in Section 6: a
two-player entry game that specializes the model of Example 1 to the case of N = {1, 2}.
Outcomes are either a duopoly when (1, 1) is realized, or monopolies when either (1, 0) or
(0, 1) are realized, or a market with no entrants with (0, 0). In line with the literature (e.g.,
Bresnahan and Reiss, 1991a; Tamer, 2003) we let πi(y, εi;x, θπ) = yi(xTi βi+∆−iy−i+εi), so
that payoff parameters are θπ = (βi,∆i)i=1,2. The parameter ∆i, called competitive effect,
quantifies how entry by firm i affects firm −i’s payoffs. Payoffs are:

Player 1 / Player 2: 0 1

0 (0, 0)
(
0, xT2 β2 + ε2

)
1

(
xT1 β1 + ε1, 0

) (
xT1 β1 + ∆2 + ε1,
xT2 β2 + ∆1 + ε2

)

A parametric assumption on the joint distribution of payoff types (e.g., iid uniform)
completes the payoff structure. In what follows we also use a simplified version of this pay-
off structure: the one-parameter entry game where covariates are suppressed, competitive
effects are equal across firms, or ∆1 = ∆2 = ∆, and payoff types are iid uniform over [−1, 1].

2.2.1 Information Structures and Bayes Nash Equilibrium

In addition to the complete information structure S̄ of Example 2, other salient informa-
tion structures fit our framework. For instance the perfectly private information structure,
denoted by S, does not provide to players any information on the realizations of others’
payoff types so that players only know their own type. This is because players receive no
additional signals: τ̃xi = εi for all x ∈ X, i ∈ N . This information structure - coupled
with the additional assumption of conditional independence across players - is often called
incomplete information or independent private types and widely adopted in the literature
on empirical games and models of social interaction (e.g., Brock and Durlauf, 2001; Seim,
2006; Sweeting, 2009).
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Both the environments of perfectly private information and complete information are
symmetric across players. An alternative information structure still contained in the set S
is privileged information SP , in which only one player knows the type of her opponent. For
the informed player i signals are τ̃xi = ε−i for all x ∈ X. For the uninformed player j signals
are τ̃xj = εj for all x ∈ X, so that she has no information beyond her payoff type εj .

Our model also nests the class of flexible information structures SF . In this setting, the
payoff type has two components, or εi = (ηi, εi), where ηi is public (observed by all players)
and εi is private to player i. Hence additional private signals are τ̃i = η−i. Examples of this
class of information structures include Aguirregabiria and Mira (2007) and Grieco (2014).

Definition 1 characterizes BNE strategy profiles for a game with information structure
S. As we vary the S, equilibria vary considerably. We illustrate this point in Figure 1, which
depicts equilibrium outcomes in the space of payoff types for the one-parameter entry game
with ∆ = −1/2. In Panel A we represent equilibrium outcomes for a game of complete
information. For every realization of ε, common knowledge for players, there are one or two
pure-strategy equilibria. In Panel B, equilibrium for the game of perfectly private informa-
tion takes the form of threshold strategies: each player does yi = 1 iff εi ≥ 1/5. In Panel
C the privileged information structure produces equilibria where player 1 knows - and can
condition her action on - both ε1 and ε2. Player 2 only knows ε2 and follows a threshold
strategy. There is a continuum of such equilibria with thresholds ε∗2 ∈ [1/8, 1/4].

Figure 1: Information and Equilibrium Outcomes

ε2

1

1/2

0

-1
-1 0 1/2 1 ε1

(0,1) (0,1) (1,1)

(1,0)
(1,0) or

(0,1)
(0,1)

(0,0) (1,0) (1,0)

(A) Complete Information

2
1

1/2

0

-1
-1 0 1/2 1

1/5

1/5

(0,1) (1,1)

(0,0) (1,0)

ε1

ε

(B) Perfectly Private Information

ε 2

1

1/2

0

-1

-1 0 1/2 1 ε1

ε*2

(0,1) (1,1)

(1,0)(0,0)

[1/8,1/4]є

(C) Privileged Information

Note: We represent BNE outcomes in the space (ε1, ε2) for the one-parameter entry game with payoffs πi(y, ε) =
yi(− 1

2y−i + εi) and εi∼U [−1, 1]. A represents complete information pure-strategy Nash Equilibrium outcomes, B
represents perfectly private information outcomes, C represents privileged information outcomes.

2.2.2 Bayes Correlated Equilibrium

We further illustrate the properties of BCE for the one-parameter entry game with
∆ = −1/2 and perfectly private information S. In this case BCE distributions are in the
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set PY×E = P{0,1}2×[−1,1]2 since signals only contain information on players’ own payoff type.
Because εi are iid uniform, for each ε ∈ [−1, 1]2 BCE distributions must satisfy

∑
y∈{0,1}2

∫
[e≤ε]

ν (y, e) de =
(
ε1 + 1

2

)(
ε2 + 1

2

)

for consistency with the prior. Moreover, in any BCE ν if player i receives the recommen-
dation to enter upon observing εi, then ν(y−i = 1 | yi = 1, εi) ≤ 2εi. Conversely player i
will stay out if ν(y−i = 1 | yi = 0, εi) ≥ 2εi. Many BCEs satisfy these constraints; consider
for instance the distribution ν ′:

ε1/ε2: ≤ 1/5 > 1/5

≤ 1/5 ν′ (0, 0, ε) = 9
25 ν′ (0, 1, ε) = 6

25

> 1/5 ν′ (1, 0, ε) = 6
25 ν′ (1, 1, ε) = 4

25

Checking consistency is immediate, as this BCE distribution prescribes pure strategies
for every ε. Incentive compatibility is also satisfied since ν ′(y−i = 1 | yi = 1, εi) = ν ′(y−i =
1 | yi = 0, εi) = 2/5. As another example, consider ν ′′:

ε1/ε2: ≤ 1/8 > 1/8

≤ 0 ν′′ (0, 0, ε) = 9
32 ν′′ (0, 1, ε) = 7

32

> 0, ≤ 1/2 ν′′ (1, 0, ε) = 9
64 ν′′ (0, 1, ε) = 7

64

> 1/2 ν′′ (1, 0, ε) = 9
64 ν′′ (1, 1, ε) = 7

64

The behavior induced by ν ′ and ν ′′ corresponds to the outcomes in Panel B and Panel
C of Figure 1, respectively, which represent BNE play in the games of perfectly private
information and privileged information. The correspondence between BCE distributions
and BNEs for different information structures previews a result in the next section: the
set of BNE outcomes for any information structure can be generated by BCE play in the
perfectly private information game. Our identification strategy builds on this result.

3 Identification

3.1 BNE Predictions and Identified Set

We study in this section the identification of θπ from cross-sectional data on outcomes
y and covariates x. Payoff types ε are unobservable to the researcher. Thus, econometric
unobservable and players’ payoff types, two conceptually distinct objects, coincide. This
is not without loss of generality - we discuss in Section 3.2.3 how this assumption can be
relaxed by changing how S is formed. The setup is summarized in Assumption 1.
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Assumption 1. (Observables) The researcher observes the distribution Px,y of the random
vector (x, y). This joint distribution induces a set of conditional probability measures {Py|x ∈
PY : x ∈ X}, where PY is the set of probability distributions over the finite set Y .

For a game in the class of Section 2, equilibrium strategies σ ∈ BNEx(θ, S) result in
predictions on observable actions:

Definition 3. (BNE Prediction) A BNE prediction for an equilibrium σ of the game
Γx(θ, S) is a distribution over outcomes qσ such that

qσ (y) =
∫
E

∫
T

(∏
i∈N

σi (εi, τ̃i) (yi)
)

dPτ |εdF, ∀y ∈ Y.

Since the game Γx(θ, S) may have multiple equilibria and we are agnostic about equilib-
rium selection, implications of equilibrium are summarized by sets of predictions. Moreover,
when data are generated by an arbitrary equilibrium selection mechanism, defined as any
probability distribution over the set of equilibria BNEx(θ, S), the set of predictions is con-
vexified as in Beresteanu et al. (2011).8 The prediction correspondence QBNE

θ,S : X ⇒ PY
that describes the set of BNE predictions in the game Γx(θ, S) is thus

QBNE
θ,S (x) = co [{q ∈ PY : ∃ σ ∈ BNEx(θ, S) such that q = qσ}] ,

where co[·] denotes the convex hull of a set.

Example 4. Consider the one-parameter entry game with ∆ = −1/2 and complete infor-
mation S = S of Figure 1, Panel A. There are three BNE strategies for this game, namely
two pure and one mixed-strategy Nash equilibria, and the corresponding set of predictions is

QBNE
∆=−1/2,S = co

[{(1
4 ,

3
8 ,

5
16 ,

1
16

)
,

(1
4 ,

5
16 ,

3
8 ,

1
16

)
,

(17
64 ,

21
64 ,

21
64 ,

5
64

)}]
,

where vectors qσ list the probabilities of outcomes (0, 0), (0, 1), (1, 0) and (1, 1).

3.1.1 Data Generating Process and Identified Set

We assume that for the true payoff and information structure (θ0, S0) ∈ Θ0×S at least
one equilibrium in BNEx(θ0, S0) exists for every x ∈ X, and that the data are generated
by BNE play in games Γx(θ0, S0). As S0 = (Sx0 )x∈X , the true information structure may be
different for each x.9 The properties of the DGP are summarized by Assumption 2.

8Although the assumption that equilibrium selection mechanisms are representable as probability distributions is
not fully general (Epstein, Kaido, and Seo, 2016), it is standard in the applied literature.

9Given the flexibility in the definition of information structure, the assumption of a unique Sx0 for each x in the
DGP is also hardly restrictive. For example, consider two information structures in S: S1 with signals tx1 ∈ Tx1 and
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Assumption 2. (DGP) For all x ∈ X, the set BNEx(θ0, S0) is non-empty and outcomes
y are generated by BNE play of the game Γx(θ0, S0) and an arbitrary equilibrium selection
mechanism, so that Py|x ∈ QBNE

θ0,S0
(x).

Given this link between game-theoretic model and observables, we want to recover θ0

but we do not know (nor attempt to recover) the true information structure S0. Under
Assumptions 1 and 2, we define the sharp identified set as:

ΘBNE
I (S) =

{
θ ∈ Θ : ∃ S ∈ S such that Py|x ∈ QBNEθ,S (x) , Px − a.s.

}
.

The set ΘBNE
I (S) captures all the restrictions on parameters implied by assuming that play-

ers know at least their own payoff shock, or equivalently that S0 belongs to the set S. Be-
cause of how S is constructed, identification with ΘBNE

I (S) is general in several dimensions.
First, for a given realization of x, the spaces of signals T̃ x may contain rich structures of non-
payoff-relevant signals and generate correlation in players’ actions. Second, the information
structure Sx may vary in an unrestricted way across different realizations of x. In the rest of
the article we refer to ΘBNE

I (S) as the identified set under weak assumptions on information.

3.1.2 Assumptions on Information and Identification

Our strategy, centered on the identification of ΘBNE
I (S), is in contrast with the prevalent

approach in the literature, based instead on further restrictions on the information structure
for the DGP. This is done by choosing S′ ∈ S that yields a tractable set of equilibrium
predictions QBNE

θ,S′ , and by focusing on

ΘBNE
I

(
S′
)

=
{
θ ∈ Θ : Py|x ∈ QBNE

θ,S′ (x) , Px − a.s.
}
.

For example, seminal articles (e.g., Bresnahan and Reiss, 1991a; Berry, 1992; Tamer, 2003)
assume complete information, or S′ = S. Conversely, other authors (e.g., Sweeting, 2009;
de Paula and Tang, 2012) restrict S′ to be the perfectly private information structure S.

Example 5. (Example 4 continued) Suppose we observe data generated by the one-
parameter entry game with ∆0 = −1/2 and S0 = S. If we perform identification of
the competitive effect ∆ under the true restriction S′ = S, the probability of duopolies
Py(1, 1) = 1/16 identifies

ΘBNE
I

(
S
)

=
{

∆ : Pr {εi > −∆}2 = Py(1, 1)
}

= {−1/2} .
S2 with signals tx2 ∈ Tx2 for all x ∈ X. The mixed information structure S3 with signals tx3 = tx1 with probability
p ∈ (0, 1), and tx3 = tx2 with probability (1 − p) is also in S. As we sample from a DGP with information structure
S3, different draws may have signals tx1 or tx2 .

12



Restrictions on information have important consequences. Ideally, the restriction im-
posed on the information structure S′ is true, that is S′ = S0 as in Example 5. In this case
the identified set ΘBNE

I (S′) is nonempty and coincides with ΘBNE
I (S0). In typical applica-

tions there is, however, little evidence on the nature of S0. If the restriction on information
is such that S′ 6= S0, the model is misspecified. In this scenario the identified set ΘBNE

I (S′)
may not contain the true θ0, or it may be empty so that the model is falsified. Performing
estimation in these circumstances leads to inconsistent estimates of θ0.

3.2 BCE and Robust Identification

The main hurdle for performing identification under weak assumptions on information
is to characterize the identified set ΘBNE

I (S) in a tractable way. To accomplish this, we
use the implications for payoff parameters of Bayes Correlated Equilibrium in games with
the perfectly private information structure S.10 BCE distributions for games Γx(θ, S) are
probability measures ν ∈ PY×E11 as in Definition 2; to each ν corresponds a prediction on
behavior, obtained as the marginal over players’ actions.

Definition 4. (BCE Prediction) The BCE ν induces a prediction qν(y) =
∫
E ν(y, ε)dε.

The observable implications of BCE are thus described by the prediction correspondence

QBCEθ (x) = {q ∈ PY : ∃ ν ∈ BCEx(θ) such that q = qν} .

Before proceeding with the identification results, we highlight the assumptions on equilib-
rium selection embedded in this approach. Assumption 2 restricts the data to be generated
by BNE play and an arbitrary equilibrium selection. This assumption, allowing for all
distributions over equilibria, results in the convexification of the set QBNEθ,S (x). To model
predictions corresponding to any equilibrium selection over BCE distributions, further con-
vexification of the set of predictions is not needed. Because the set BCEx(θ) is convex,
any convex combination of BCE predictions is also a BCE prediction.12 Hence QBCE

θ (x)
captures predictions corresponding to any equilibrium selection over BCE distributions. In
contrast, QBNE

θ (x) requires convexification to correspond to a BNE DGP with arbitrary
equilibrium selection mechanism.

3.2.1 Robust Prediction

Bergemann and Morris (2013) establish the robust prediction property of BCE. In our
10This choice corresponds to our definition of the information structures that form S; we discuss extensions in

Section 3.2.3.
11Although in general Definition 2 specifies BCE distributions as ν ∈ PY,E,T̃ , for the special case of perfectly private

information where τ̃xi = εi considering BCE distributions ν ∈ PY×E is without loss.
12See Remark 1 in Appendix B for a proof of these statements.
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setup, this property translates into the equivalence, for any given θ, between the BCE
predictions QBCE

θ and the union of BNE equilibrium predictions QBNE
θ,S over all S ∈ S.

Lemma 1. (Bergemann and Morris, 2013) For all θ ∈ Θ and x ∈ X,

1. If q ∈ QBCE
θ (x), then q ∈ QBNE

θ,S (x) for some S ∈ S.

2. Conversely, for all S ∈ S, QBNE
θ,S (x) ⊆ QBCE

θ (x).

Part 1 of the lemma states that, given a BCE, we can generate corresponding BNE pre-
dictions. This is done by constructing an information structure where signals correspond to
BCE mediator recommendations. Conversely, in a BNE players receive signals on their op-
ponents’ payoffs and an equilibrium is selected. Adopting the mediator metaphor of BCE,
for every payoff type and signal realization, the mediator suggests play according to the
BNE strategies selected by the equilibrium selection mechanism. Hence, we can construct a
BCE where each player i receives the recommendation to play action yi if and only if payoff
types and equilibrium selection are such that (yi, y−i) is the outcome of BNE play. Thus
BCE predictions for the game with information structure S encompass BNE predictions for
all games with any information structure S ∈ S.

Example 6. (Example 4 continued) Figure 2 depicts the set of BCE outcomes for ∆0 =
−1/2. Panel A shows that BCE imposes weaker restrictions on equilibrium behavior than
BNE does for a specific information structure: the sets of BNE predictions are subsets of
the set of BCE predictions, as stated in Lemma 1. Panel B illustrates instead that BCE pre-
dictions are a relatively small subset of all possible outcomes (represented by the simplex).

3.2.2 Robust Identification

We are most interested in the implications of adopting BCE for identification. Under
the assumption of BCE, the identified set of parameters in this class of games is

ΘBCE
I =

{
θ ∈ Θ : Py|x ∈ QBCE

θ (x) Px − a.s.
}
. (3.1)

Building on the robust prediction property of BCE, we establish the following proposition:

Proposition 1. (Robust identification) Let Assumptions 1 - 2 hold. Then ΘBCE
I = ΘBNE

I (S).

Proposition 1 translates the robust prediction insight, due to Bergemann and Morris
(2013, 2016) and summarized in Lemma 1, into a robust identification result and is the
foundation for the use of BCE for identification. Adopting BCE provides an alternative
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Figure 2: BCE Predictions

(A) (B)

Note: We compare BCE predictions QBCEθ with the BNE predictions QBNEθ,S obtained under different information
structures for the one-parameter entry game with payoffs πi(y, ε) = yi(−1/2y−i + εi) and εi∼U [−1, 1]. The axes
represent probabilities of outcomes Py . A shows that QBCEθ contains the BNE predictions. B shows the set of BCE
predictions inside the unit simplex. Computational details are in Appendix C in the Supplementary Materials.

(and, as we discuss in the next section, analytically convenient) characterization of iden-
tification under weak assumptions on information. We do not use BCE as an alternative
equilibrium assumption on the DGP: our Assumption 2 maintains that data are generated
by BNE play. Instead, in light of Proposition 1, we use the BCE identified set ΘBCE

I to
recover the identified set under weak assumptions on information ΘBNE

I (S).
Note an important difference between Lemma 1 and Proposition 1. The set of BCE

predictions contains predictions corresponding to all BNEs for games with information
structures S ∈ S. However, the identification perspective of Proposition 1 does not imply
that for all S ∈ S there exists some θ ∈ ΘBCE

I that is compatible with the data and with S.
Instead, the set ΘBCE

I contains only those parameters for which there exists an information
structure and a corresponding BNE that generate predictions matching the data.

3.2.3 Extensions: Alternative Baseline Information Structures

The robust identification result of Proposition 1 can be extended beyond the class of
games described in Section 2. For instance, our description of payoff structures in Section
2.1 included restrictions such as independence of payoff types and covariates, and paramet-
ric assumptions on the distribution of payoff types. While these are useful to preserve the
link with the applied literature, they are not necessary for Proposition 1 to hold.

More importantly, the definitions of a generic information structure S and of the set
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S in Section 2.1 do not impose parametric restrictions on information, but assume that
players know at least their own payoff type and all other elements of the game such as
x. This restriction simplifies exposition, is plausible in our application, and strikes a bal-
ance between maintaining weak assumptions and providing identification power in practice.
However, other definitions of the set of information structures are possible and may be
more appropriate in applications. For instance, we could assume that players do not know
elements of x, thus breaking the perfect overlap between the econometric unobservable and
players’ domain of uncertainty in the incomplete information game.

Proposition 1 extends to models where the set of information structures is defined by
first choosing a baseline level of information S∗, and then constructing the set S(S∗) of
all information structures such that players receive the signals in S∗ and some additional
signal. More precisely, the set ΘBNE

I (S(S∗)), which corresponds to BNE play in games with
any information structure in S(S∗), coincides with ΘBCE

I (S∗), the BCE identified set for
the game with information structure S∗. A formal statement of this result is in Appendix
F in the Supplementary Materials. Although we use S as baseline in most of the article,
we discuss in the example below and in Section 5 a model with a different baseline.

Example 7. Consider the one-parameter entry game with ∆ = −1/2 and additively sepa-
rable payoff types εi = ηi + εi. We set as baseline S∗ the flexible information structure SF

where εi is private information and ηi is public information. Thus, player i receives signals
τi = (εi, η−i, τ̃i) where τ̃i is an additional private signal, which we leave unrestricted. When
data are generated by BNE play the identified set is ΘBCE

I (SF ) as Proposition 1 extends
to this setup - see Appendix F for details. This example speaks to many IO applications,
where firms know more than the researcher about market conditions that affect their profit.

3.3 Illustration: Assumptions on Information and BCE Identification

We consider again identification of the competitive effect ∆ ∈ [−1, 0] in the one-
parameter entry game, where the data are generated by the payoff structure ∆0 = −1/2.
Restrictive assumptions on information have a substantial impact on identification. For
illustration, we consider the non-sharp identified set13

Θ̃BNE
I

(
S′
)

=
{

∆ ∈ Θ | ∃ q ∈ QBNE
∆,S′ such that q([y = (1, 1)]) = Py(1, 1)

}
,

obtained by using only the probability of the outcome (1, 1). Table 1 summarizes the iden-
tified set Θ̃BNE

I (S′) under several combinations of S′ and S0.
Table 1 shows that overstating the amount of information available to players leads to

13We use in this example the non-sharp identified set based on one moment of Py – as opposed to the sharp identified
set ΘBNE

I (S′) – to build intuition on the direction of the misspecification bias.
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Table 1: Information and Identification

True Information Structure: S0 = S S0 = SP S0 = S

Projection of Θ̃BNE
I (S′):

S′ = S {−0.50} {−0.34} {−0.2}
S′ = SP [−0.72,−0.63] [−0.5,−0.44] [−0.29,−0.26]
S′ = S ∅ ∅ {−0.50}

Projection of ΘBCE
I [−1,−0.39] [−1,−0.26] [−1,−0.28]

Note: We report the identified sets for the one-parameter entry model with payoffs πi(y, εi; ∆) = yi(∆y−i+εi)
and εi ∼ U [−1, 1]. The non-sharp identified sets Θ̃BNE

I (S′) are obtained under assumptions on information
S′ (corresponding to rows) and true S0 (corresponding to columns). The true parameter value is ∆0 = −1/2.
Details on the computation of ΘBCE

I are in Appendix A.

an identified parameter that is smaller, in magnitude, than the true parameter value.14

This is because the probability of a duopoly predicted by the model depends on ∆ and on
players’ degree of certainty that their competitor also enters. With complete information
players know that the equilibrium outcome is (1, 1) whenever a duopoly is realized. Hence
this model predicts, for a given ∆, the lowest Py(1, 1) across all information structures.
Adopting complete information when data are generated by a model with some level of
incomplete information leads thus to understate the magnitude of ∆.

The example illustrates how misspecification of the information structure may result in
bias, and this intuition generalizes to more complex models. Estimation of ΘBCE

I avoids
bias as this set always contains the true parameter value (in the example, ∆0 = −1/2).
However the example also shows that ΘBCE

I may be large, casting doubt on the informa-
tiveness of our approach. We return to this issue in Section 5, after introducing in Section
4 computational and inferential tools that make our approach applicable.

4 Computation and Inference

4.1 Support Function Characterization of the Identified Set

Proposition 1 establishes that ΘBCE
I contains all parameters compatible with the observ-

ables and with any information structure in S. To estimate ΘBCE
I we need however a more

practical characterization, as it is not obvious how to compute the set from Equation (3.1).
We already noticed that the set QBCE

θ (x) is convex for every x and thus it can be
represented by its support function as in Beresteanu et al. (2011).15 Let B denote the
closed unit ball in R|Y | centered at zero and let h(·;QBCE

θ (x)) : B → R denote the support
function of QBCE

θ (x)
h
(
b;QBCE

θ (x)
)

= sup
q∈QBCE

θ
(x)
bT q.

14This bias has already been noted by by Bergemann and Morris (2013) and Aguirregabiria and Magesan (2020).
15Because BCE yields a convex set of predictions, we do not need to use Aumann expectations as in Beresteanu

et al. (2011). Appendix E describes how our characterization of the identified set maps into their framework.
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The support function provides a representation of the set of predictions

q ∈ QBCE
θ (x)⇐⇒ bT q ≤ h

(
b;QBCE

θ (x)
)
∀ b ∈ B.

We have then a new characterization of the identified set:

ΘBCE
I =

{
θ ∈ Θ : bTPy|x ≤ h

(
b;QBCE

θ (x)
)
∀ b ∈ B, Px − a.s.

}
=

{
θ ∈ Θ : max

b∈B
min

q∈QBCE
θ

(x)

[
bTPy|x − bT q

]
= 0, Px − a.s.

}
.

The computation of this object can be further simplified: because the inner program is a
linear constrained minimization, we can consider its dual maximization program. This step
allows us to check whether θ belongs to ΘBCE

I by solving a single constrained maximization
problem. Appendix A discusses computational details.

4.2 Inference

Suppose that the researcher observes an iid sample of actions and covariates {yj , xj}nj=1,

where the set of covariates X is discrete and finite.16 We adopt an extremum estimation
approach to perform inference, after Chernozhukov et al. (2007). To this aim, we redefine
the identified set as the set of minimizers of a non-negative criterion function G,17 or
ΘBCE
I = {θ ∈ Θ : G(θ) = 0} , where G(θ) =

∫
X supb∈B[bTPy|x − h(b;QBCE

θ (x))]dPx. The
sample analogue of the population criterion function is

Gn (θ) = n−1
n∑
j=1

sup
b∈B

[
bT P̂y|xj − h

(
b;QBCE

θ (x̄j)
)]
,

where P̂y|xj is the empirical frequency of y in observations with covariates x = xj .
As long as the payoff function is continuous in payoff parameters, the population crite-

rion function inherits a smoothness property from the upper hemi-continuity of the equi-
librium correspondence, and we obtain a consistent estimator of the identified set as in

16This assumption is needed to apply the method of Chernozhukov et al. (2007). Although alternative inferential
methods do not require discrete covariates (Andrews and Shi, 2013), they are computationally intensive in the context
of our model. Other methods (e.g., Andrews and Soares, 2010; Kaido, Molinari, and Stoye, 2019) are designed for
models that generate a finite number of (conditional) moment inequalities, and do not immediately apply to our setup.

17 Since the set of predictions QBCE
θ (x) is a subset of the (|Y | − 1)-dimensional simplex, in our application it is

sufficient to adopt the equivalent criterion function

G̃ (θ) =
∫
X

sup
b̃∈B|Y |−1

[
b̃T P̃y|x − h

(
b̃; Q̃BCE

θ (x)
)]

dPx,

where B|Y |−1 is the (|Y |−1)-dimensional closed ball, P̃y|x is the first |Y |−1 elements of Py|x and Q̃BCE
θ (x) is the set

of the first |Y | − 1 elements of BCE predictions. With an argument analogous to Theorem B.1 in the Supplemental
Materials of Beresteanu et al. (2011) it is immediate to establish that {θ ∈ Θ : G̃(θ) = 0} = {θ ∈ Θ : G(θ) = 0}.
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Chernozhukov et al. (2007). We state this result formally in Proposition 2 in Appendix B,
where we establish that Θ̂BCE

I = {θ ∈ Θ : nGn(θ) ≤ an} is a consistent estimator of ΘBCE
I

for an →∞ and an
n →∞. As in Ciliberto and Tamer (2009), we do not use this estimator

directly to perform inference, but rather use it as a basis to construct a confidence set Cn
for θ ∈ ΘBCE

I . The set Cn, for a confidence level α = 0.05, has the coverage property

lim inf
n→∞

P {θ ∈ Cn} ≥ 1− α, ∀θ ∈ ΘBCE
I ,

Appendix C.4 in Supplementary Materials describes how we compute Cn.

5 Identifying Power of BCE

We discuss in this section the informativeness of the identified set under BCE. When re-
laxing identifying restrictions there is a trade off between robustness and informativeness of
identified sets. This is true not only for assumptions on information, the focus of this article,
but more generally. For instance, the assumption of BNE or BCE play could be weakened
to non-equilibrium concepts such as k-level rationality (Aradillas-Lopez and Tamer, 2008).

Consider the simple two-parameter entry game, a variant of the two-player entry game
described in Section 2.2 with no covariates, firm-specific competitive effects ∆i and iid
standard normal payoff types. In Figure 3, Panels A and B we explore how assumptions on
equilibrium and information affect the identification of competitive effects for data generated
by equilibrium play under complete information. BCE emerges as a compromise between
robustness and informativeness. On the one hand, the set ΘBCE

I (in red, Panel B) is larger
than the identified set under the (correct) assumption of Nash Equilibrium with complete
information (in light blue, Panel B). On the other hand, identified sets obtained under
level-1 and level-2 rationality (Panel A) are hardly informative.

Although the exposition in most of the article adopts S as baseline, some applications
may warrant a different choice. To model this case, we specify payoff types as in Example
7: εi = ηi+ εi, where ηi is iid uniform in {−1/2, 1/2}, and εi ∼ N(0, 1). In addition to S we
consider another assumption on the baseline information structure: SF , where εi is private
and ηi is public information. As we assume that the DGP is complete information, setting
SF as baseline is a correct restriction on information. In Figure 3, Panel C we represent
BCE identified sets for the two-parameter entry game under the two baselines. The baseline
SF results in a smaller identified set (in blue) as compared to S (in purple). This suggests
that - whenever compatible with the empirical environment - researchers should consider
applying our method with baselines that are richer than S.
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Figure 3: Equilibrium Assumptions, Information and Identification

(A) Identification under R1, R2 (B) Identification under BCE, NE

(C) BCE with S, SF baseline

Note: We represent the identified sets for (∆1,∆2) under different restrictions on behavior in a two-player game
with payoffs πi = yi(y−i∆i + εi). Data are generated by Nash Equilibrium play with complete information, and true
parameters ∆1 = ∆2 = −1/2 are represented by black dots. In Panels A and B, εi ∼ N(0, 1). In Panel C, εi = ηi+εi,
where ηi is iid uniform in {−1/2, 1/2}, and εi ∼ N(0, 1). See Appendices A, C and F for computational details.

5.1 The Role of Covariates: Point and Set Identification

Figure 3 shows that BCE generates tighter identification than non-equilibrium restric-
tions do, but also that ΘBCE

I may be much larger than ΘBNE
I (S). To shrink ΘBCE

I we
introduce a key source of identifying power: variation in x. In particular, full-support vari-
ation of player-specific covariates yields point identification of payoff parameters θπ under
BCE. The full-support assumption ensures that covariates take values such that players
have a dominant strategy for almost all payoff types: identification of payoffs then pro-
ceeds as in single-agent discrete choice models. This identification strategy, first proposed
for games of complete information under pure Nash Equilibrium play (Tamer, 2003), also
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applies with weak assumptions on information.18 In fact, BCE does not allow agents to
play dominated actions: this is sufficient for point identification of θπ. A formal statement
of this intuition in a simple setting (two-player entry games with linear index payoffs) is in
Proposition 3 in Appendix B.

Although we do not expect the large support assumptions to always hold in applications,
the identification at infinity argument points to a source of variation that aids identification
even when covariates have finite support. To illustrate the identifying power of BCE in
the latter case, we compute ΘBCE

I for a two-player entry game with linear index payoffs.
Table 2 reports projections of ΘBCE

I for three DGPs characterized by information structures
S0 = S̄, S0 = S, and S0 = SP respectively,19 and for two sets of uniformly distributed
covariates with finite support, X ′ and X

′′
. The set X ′ = X

′
1 × X

′
2 × X

′
C is characterized

by X ′i = X
′
C = {−1, 0, 1}; the set X ′′ = X

′′
1 ×X

′′
2 ×X

′′
C is instead characterized by player-

specific X ′′i = {−3, 0, 3} for i = 1, 2 and X ′′C = X
′
C .

Table 2: Identification with Finite Support

Panel (A): X′ βC βi ∆1 ∆2 ρ

θ0 1 1 −1 −1 −
S0 = S̄ [0.82, 1.17] [0.82, 1.18] [−2.41,−0.87] [−2.37,−0.87] −
S0 = S [0.82, 1.17] [0.82, 1.16] [−1.79,−0.92] [−2.43,−0.87] −
S0 = SP [0.83, 1.01] [.83, 1.12] [−2.35,−0.87] [−2.33,−0.87] −

Panel (B): X′′

θ0 1 1 −1 −1 −
S0 = S̄ [0.96, 1.16] [0.92, 1.03] [−1.16,−0.99] [−1.16,−0.99] −
S0 = S [0.96, 1.15] [0.93, 1.03] [−1.19,−0.98] [−1.16,−0.99] −
S0 = SP [0.96, 1.15] [0.92, 1.03] [−1.19,−0.98] [−1.16,−0.99] −

Panel (C): X′′ and correlated payoff types
θ0 1 1 −1 −1 0.80

S0 = S̄ [0.94, 1.15] [0.82, 1.23] [−1.17,−0.78] [−1.16,−0.83] [0.08, 0.80]

Note: We report projections of ΘBCEI for the two-player game with payoffs πi(y, εi;x, θπ) = yi(xTc βC+xTi β
E
i +

∆−iy−i + εi). Payoff types are εi ∼ N(0, 1) in A and B, and ε ∼ N(0,Σ), Σ = ( 1 ρ
ρ 1 ) in C. The first row

in each panel reports the true θ0; subsequent rows report projections of ΘBCE
I for different S0. Computational

details are in Appendices A and C.

Results indicate that discrete covariates have identifying power in this model. The iden-
tified set, measured by projections for each parameter, shrinks considerably as we increase
variation in covariates. In particular, the projection of the identified sets along ∆1 and ∆2

shrinks by a factor of about 5 to 7 (depending on the DGP) when the support of covariates
is enlarged from X

′ to X ′′ .
18Other articles (e.g., Bajari, Hong, and Ryan, 2010b; Grieco, 2014; Kline, 2015) establish point identification of

players’ utility functions under at infinity variation for games with different sets of assumptions on information,
equilibrium selection and parametric restrictions on primitives.

19We select an equilibrium when multiple equilibria exist in the DGP. For S0 = S we select with equal probability
one of the two pure-strategy equilibria, and for S0 = SP we select the equilibrium that maximizes player 2’s probability
of entry. Selecting different equilibria does not change qualitatively the informativeness of our identified sets.
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Whereas full-support covariates generate point identification of θπ, we do not have a
corresponding point identification result for the payoff type parameters θε. To understand
intuitively the challenges posed by the identification of θε under BCE, we discuss the equiv-
alent problem of identification under BNE and weak assumptions on information. Some
information structures in S feature correlated signals that may induce highly correlated
BNE play despite low correlation in payoff types. If there exist information structures that,
for a given correlation in payoff types, can generate any correlation in actions, then the
bounds on θε implied by our method would be trivial. Instead, the equilibrium assump-
tion disciplines outcomes even under weak assumptions on information. For instance, in
a two-player entry game, rationalizing high values of correlation in payoff types when this
correlation is zero in the DGP requires the model to systematically produce duopolies that
are not profitable, and thus cannot represent BNE outcomes.

To formalize this argument, we construct in Appendix G non-sharp bounds using a
simple implication of equilibrium behavior: observed play cannot correspond to dominated
actions. These bounds show that moments of the joint distribution of outcomes have sig-
nificant identifying power with respect to the parameter θε. Although the characterization
of ΘBCE

I in Section 4 uses an infinite number of moment inequalities to identify θε and
hence is hardly interpretable, these non-sharp bounds reveal that simple moments of the
data provide identification power in an intuitive way.

6 Application: Large Malls and Supermarket Entry

In this section we apply our method to quantify the effects of large grocery-anchored
malls on local supermarkets in Italy. The sign and intensity of this effect need to be de-
termined empirically. Malls’ “anchor” grocery stores may be strong competitors for nearby
supermarkets, thus discouraging their presence. Alternatively, format differentiation may
results in little competition between local supermarkets and malls’ anchor stores, which in-
stead may benefit from demand spillovers. If this is the case, restrictions to entry by malls
may be harmful to consumers. To shed light on the research question, we estimate a game-
theoretic model where supermarket chains choose whether to operate stores in geographic
grocery markets, and malls may affect supermarkets’ profits. We model the cross-section of
market-structure outcomes as equilibrium of a simultaneous game, following a large litera-
ture (Bresnahan and Reiss, 1991b; Berry, 1992; Seim, 2006; Ciliberto and Tamer, 2009).20

The empirical methods developed in the previous sections of this article are well suited
for this application. The institutional features of the industry offer limited guidance on the

20Although dynamic methods are appealing for applications where inter-temporal incentives are of first-order im-
portance, most empirical models of dynamic games require strong assumptions on the nature of information and of
unobserved heterogeneity that we want to avoid.

22



information available to firms, which base their entry decisions on both private and public
information. For instance, local authorities impose entry costs that vary across stores and
are mostly private information to firms. Moreover, industry players are heterogeneous in
their ability to collect and process private information.21 We also estimate the game under
the assumptions of complete information and perfectly private information, and discuss the
consequences of using methods that rely on these more restrictive assumptions.

Results from our method indicate a substantial degree of differentiation between the gro-
cery stores in malls and local supermarkets. We do not reject a zero effect of malls on super-
markets, while we reject large negative effects. As a consequence, in the policy experiment
of Section 7 we find that a market structure with at least two competing industry players
may not be more likely without the mall. Adopting weak assumptions on information is key
for this finding. Assuming that data is generated by BNE in the game of perfectly private
information or by pure strategy Nash equilibrium in the game of complete information yields
negative estimates of the effect of malls on supermarkets, thus predicting an increase of the
probability of observing two or more local stores upon removing the mall from small markets.

6.1 Data and Institutional Details

We use data on the cross-section of all supermarkets in Northern and Central Italy
in 2013 from the market research firm IRI. We complement these with hand-collected in-
formation on malls and mall size, obtained from public online directories. We focus on
Northern and Central Italy because the structure of grocery markets in the South differs
markedly, with traditional stores and open-air markets playing an important role and fewer
large malls. We obtain data on population and demographics from the 2011 official census,
and municipality level data on income for 2013 from the Italian Ministry of the Economy.

Defining the relevant markets for our study requires specifying which store formats are
direct competitors and the geographical extent of grocery markets. The Italian antitrust
authority distinguishes between stores with floor space up to 1,500 m2 (16,146 ft2) and stores
above this threshold, pointing out that these two categories differ in location, assortments,
and applicable regulation (Viviano, Aimone Gigio, Ciapanna, Coin, Colonna, Lagna, and
Santioni, 2012). Larger stores have seen the fastest growth in the industry in the period
of our study, suggesting that firms and consumers prefer these modern formats. As larger
stores are most relevant to welfare outcomes and most likely to compete with the grocery
anchors in malls, we consider stores with a floor space of at least 1,500 m2 (16,146 ft2)as
the relevant market for our study.

No existing administrative unit provides a natural way of defining local grocery markets
in Italy. Because commuting patterns capture consumers’ daily movements better than

21Magnolfi and Roncoroni (2016) explore one of the sources of this heterogeneity: firms’ political connections.
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administrative units do, we delimit markets starting from the geographic commuting ar-
eas defined by ISTAT, the national statistical agency, and split commuting areas that are
too large.22 The geographic extension of these markets is consistent with industry sources
and existing studies.23 We drop from our sample large cities with population greater than
300,000, as the density of urban areas makes it hard to separate markets. This leaves us
with 484 grocery markets. Markets with no large malls are systematically smaller, have
a lower per capita income, and have on average one supermarket. Summary statistics are
available in Table A2 of the Supplementary Materials.

Firms operating in the Italian supermarket industry are heterogeneous. Coop Italia
and Conad, organized as cooperatives, have the largest market share. Despite their orga-
nizational form, we assume that their entry behavior is profit maximizing.24 Auchan and
Carrefour, two major French retail firms, entered the Italian market mostly in the early
2000s. Additionally, five other Italian firms (Esselunga, Bennet, PAM, Finiper and Selex)
operate chains of large stores and have a market share greater than 2.5% in 2013. Given
the similarities among supermarket groups with comparable organizational structures, we
consider in our analysis three types of players: cooperatives, Italian supermarket groups,
and French groups. The industry is subject to extensive regulation, and entry in local mar-
kets may be delayed significantly by zoning and other laws. We assume that all players that
found profitable to enter a market were able, by 2013, to do so.

We define large malls as shopping centers with at least 50 shops, including a grocery
anchor. These anchor supermarkets may receive rent subsidies from mall operators, as they
attract consumers that shop at other stores in the mall. Malls’ catchment areas are substan-
tially larger than those of supermarkets, attracting shoppers who drive up to 30 minutes
from a region that only partially coincides with the local grocery market.

To obtain preliminary evidence on the impact of large malls on grocery markets, we
estimate linear and ordered probit regressions. The estimates, reported in Table A2 of the
Supplementary Materials, indicate a small and negative covariation between presence of
large malls and market structure outcomes such that as the number of supermarkets or
the number of industry players operating in a market. However, the market structure that
would emerge if malls were not present in a market also depends on the competitive effect
that supermarket industry groups have on each other’s entry decisions: credible predictions
require estimates of these parameters.

22We split the commuting area along municipality borders if it contains more than two towns that have population
greater than 15,000, and are in a radius of 20 minutes of driving distance.

23Evidence collected by various European antitrust authorities indicates that most consumers travel little to do
their grocery shopping. For example, UK’s Competition Commission considers all large stores in a radius of 10-15
minutes by car to belong to the same market. Pavan, Pozzi, and Rovigatti (2020) use the same Italian commuting
areas we use as a basis for market definition in their study of gasoline markets.

24This is in line with our findings in Duarte, Magnolfi, and Roncoroni (2021), where we find that Coop’s pricing
behavior is profit maximizing.
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6.2 Game-theoretic Model

To capture strategic interaction among players in the supermarket industry we estimate
a static model of entry similar to the example in Section 2.2. Players choose whether to
enter each market based on exogenous market characteristics, presence of other players,
and firm-market specific characteristics unobserved by the researcher. Payoffs from entry
for player i in market m are

πi(·;xm, θπ) = xTi,mβi +
∑
j 6=i

yj,m∆j + εi,m,

whereas payoffs from staying out of the market are normalized to zero.25

Market level covariates xi,m include market size (measured as the product of popula-
tion and logarithm of income),26 an indicator for the presence of large malls in the market,
and a player-specific home-region indicator. The coefficient measuring the effect of market
size on profits is constant across players. The coefficients that measure the effect of malls
on supermarket players, the home-region indicator and competitive effects ∆i are instead
heterogeneous across players. The vector of payoff types (εi,m)i∈I is jointly distributed ac-
cording to a distribution F (ε; ρ).We assume that for every i, εi,m has a logistic distribution
with zero mean and unit scale parameter. The correlation of payoff types is modeled by a
normal copula, with correlation ρ between any pair (εi,m, εj,m).

In principle, supermarket groups may enter a market with several stores, or choose dif-
ferent store formats for different markets. For simplicity actions yi are binary in the model.
Moreover, we consider a game with three players, lumping together cooperatives, indepen-
dent Italian groups and French groups.27 Hence player i (for example, independent Italian
groups) can take a binary action yim ∈ {0, 1} in market m, so that yim = 1 corresponds
to entry by at least one Italian group with at least one supermarket in market m. These
substantial simplifications respond to the need to limit the complexity of the model while
maintaining the flexibility necessary to consider a policy experiment.28

We also assume that the presence of large malls is exogenous to outcomes in the super-
market industry.29 This strong assumption is not unrealistic in our environment. Malls have
a larger catchment area than supermarkets, as they attract consumers from a region that

25A structural interpretation of this payoff specification is discussed in Berry (1989).
26This measure of market size captures the decline of the share of income that consumers spend in groceries as

their income level increases. Alternative formulations of market size generate conditional correlations between entry
outcomes and presence of large malls, and are thus unlikely to drive our results.

27As in Ciliberto and Tamer (2009), this assumption is appropriate as long as the firms that are aggregated behave
similarly in the markets in our sample.

28Existing studies of market structure in retail industries have explored aspects that are absent from our analysis,
which provides instead greater flexibility with respect to the information structure. For instance, economies of density
(Holmes, 2011) and chain-effects (Jia, 2008) have been found to be important in the US discount retail industry.

29Grieco (2014) and Ackerberg and Gowrisankaran (2006) similarly assume exogenous entry for a large player.
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only partly overlaps with the local grocery market. Moreover, regulation and the scarcity
of available land may push developers to locate malls far from their ideal location.

We estimate the model under weak assumptions on information: by Proposition 1, this is
equivalent to estimating ΘBCE

I . This approach nests all the information structures adopted
thus far in the empirical literature, and allows for asymmetries in players’ information that
are relevant for this empirical setting but not compatible with existing models. To compare
our method with standard techniques, we also obtain estimates under two more restrictive
assumptions: complete information (Ciliberto and Tamer, 2009), and perfectly private in-
formation Su (2014). Beyond assumptions on information, these methods require additional
restrictions on the payoff structure and on equilibrium selection that are not necessary with
our method. In particular, we assume that payoff types are independent across players
when performing estimation under perfectly private information.30

The discussion in Section 5 guides our intuition on what variation in the data identifies
the parameters. Although our model includes a firm specific covariate, the home-region
indicator variable, this variable does not have full support thus parameters are set identified.
Bounds on β are identified by covariation of market characteristics and entry patterns.
Identification of ∆j stems from the comparison between the probability of entry for firms
−j in markets where firm j is unlikely to enter, and the corresponding probability in markets
where firm j is likely to enter. The data have some identification power with respect to ρ, the
correlation between unobservable payoff types. A high correlation between entry decisions
across firms in markets that have different profitability across firms (based on data and
other parameters) is particularly informative about the lower bound on ρ. Similarly, low
correlation between entry decisions across firms in markets that have uniform observed
profitability across firms establishes an upper bound on ρ.

6.3 Estimation Results

Column I in Table 3 presents projections of the estimated 95% confidence set for ΘBCE
I .

Constructing the joint confidence set, as opposed to estimating projections directly, results
in more conservative inference and is computationally costlier (Bugni, Canay, and Shi, 2017;
Kaido et al., 2019), but is necessary to perform policy experiments. We report, for each pa-
rameter, its lowest and highest values in the confidence set. We also report values of θ̂0, the
minimizer of Gn. Coefficients’ magnitudes are not interpretable, but the policy experiment
in the next section illustrates their implications for outcomes.

The evidence on the effect of the presence of large malls on supermarkets is mixed. The
effect of malls is not significantly different from zero for any of the players, although the

30In line with Ciliberto and Tamer (2009) we restrict equilibrium selection assuming that data are generated by
pure-strategy Nash equilibrium. Following Su (2014) we restrict in an important way the payoff structure (by assuming
that payoff types are iid) and equilibrium selection (by assuming that a unique BNE is played in the data).
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Table 3: Confidence Sets

Parameter Weak Assumptions Complete Perfectly Private
on Info - BCE Info - Nash Info - BNE

(I) (II) (III)

Constant [−2.15,−0.21] [−3.26,−1.51] [−3.52,−3.17]
−1.46 −2.08 −3.33

Market Size [3.00, 7.64] [3.67, 6.23] [2.60, 3.95]
3.66 4.28 3.07

Home-region:
Cooperatives [−0.91, 1.95] [−0.21, 1.16] [1.37, 1.81]

0.61 0.64 1.60
Italian Groups [−0.39, 2.62] [−0.14, 1.66] [1.54, 2.00]

1.34 0.97 1.72
French Groups [−1.46, 1.96] [−0.50, 1.15] [1.11, 1.58]

1.10 0.62 1.32
Presence of Large Malls:

Cooperatives [−3.26, 1.79] [−2.37, 0.45] [−2.03,−1.19]
1.35 −1.19 −1.62

Italian Groups [−3.77, 1.49] [−2.63,−0.53] [−1.47,−0.43]
0.87 −1.41 −1.05

French Groups [−2.94, 1.02] [−4.39,−0.19] [−1.31,−0.47]
−1.04 −1.31 −0.80

Competitive Effects:
Cooperatives [−5.30,−1.11] [−2.40,−0.73] [−0.56, 0.47]

−2.70 −1.76 0.02
Italian Groups [−6.11,−1.69] [−2.45,−1.34] [−1.09,−0.30]

−2.46 −1.84 −0.67
French Groups [−7.12,−1.55] [−3.46,−0.39] [1.73, 3.52]

−5.61 −1.49 2.88

ρ - Correlation Of [0.36, 0.96] [0.90, 0.99] −
Unobservable Profitability 0.69 0.96

Note: We report estimates for the game-theoretic model of Section 6.2 under different assumptions on
information. For the models in columns I and II, which are set identified, we report projections of Cn (on top)
and θ̂0, the minimizer of Gn. Estimates in column II are obtained under the additional assumption of pure
strategy Nash equilibrium. The model in column III is point identified, and we report point estimates and 95%
confidence intervals. Estimates for this model are obtained under the additional assumption that payoff types
are iid and that the data are generated by a unique BNE. See Appendices A and C for computational details.

corresponding confidence sets lie mostly on the negative real line. Competitors’ presence
in a market makes entry less profitable: the confidence set includes large negative compet-
itive effects. Projected confidence sets for ρ are firmly positive, pointing to a substantial
correlation among unobserved determinants of supermarkets’ profits.

In column II of Table 3 we report the projections of the 95% confidence intervals for the
identified set under complete information. For the constant, market size, and home-region
parameters the confidence sets corresponding to the weak assumptions on information and
complete information models are largely similar. Assuming complete information makes a
difference, however, for the effect of large malls and for competitive effects. Although the
sign of the effect of malls is not identified under weak assumptions on information, with
complete information this effect is negative for two out of three players in the industry.

The importance of assumptions on information is also apparent when we consider the
estimates of competitive effects. Under complete information the competitive effects are
milder than those obtained with weak assumptions on information. This finding is in
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line with the discussion in Section 3.3: by assuming complete information we impose that
players who enter a market have correct expectations on competitors’ presence. Instead,
under BCE expectations may incorporate uncertainty about competitors’ actions, so that
more negative values for the competitive effects are not rejected. The interval for ρ is smaller
under complete information and includes only values close to 1. Instead, lower values of
ρ are not rejected under weak assumptions on information, as in this model correlation in
players’ actions can be rationalized as correlation of signals.

In column III of Table 3 we report parameter estimates obtained under the assump-
tion of perfectly private information.31 This method finds negative and precisely estimated
effects of malls, and very weak or positive competitive effects. This latter finding is inconsis-
tent with economic intuition, suggesting that the restriction of perfectly private information
- coupled with the additional strong assumptions of a single equilibrium in the data and
independent payoff types that are necessary for estimation with standard methods - does
not fit the data well. This result echoes previous observations in the literature.32 For this
reason, we focus on the models with weak assumptions on information and with complete
information in the next section.

The fact that the confidence set we estimate under restrictive assumption on information
is not nested in the confidence set estimated under the weaker BCE assumption deserves
some discussion. Proposition 1 establishes that the complete information identified set
is a subset of the BCE identified set. However, when going from identification to finite-
sample estimates, sampling variation may cause the sets to be non-nested. Additionally,
misspecification due to restrictive assumption may lead the complete information model to
be falsified, and hence have an empty identified set.33

7 Policy Experiment: Removing Malls from Small Markets

To quantify how market structure is affected by the presence of malls, we consider a
policy experiment in which regulation prevents malls from locating in small markets. We
examine eight small markets that have a mall but no supermarkets in the data, and compute
predicted entry outcomes when the mall is removed.

Our policy experiment involves a change in x: we denote xpre as the market-level covari-
ates in the data, and xpost as the covariates in the scenario that removes large malls.34 To

31We compute these estimates using the method of Su (2014); in Appendix C we discuss the details of the estimation
procedure, and compare it the alternative method in Bajari, Hong, Krainer, and Nekipelov (2010a).

32Aguirregabiria and Mira (2007) and Igami and Yang (2016) observe that ignoring correlation among payoff types
biases estimates of competitive effects. In Grieco (2014) the perfectly private information model is rejected.

33This discussion suggests a possible procedure for rejecting assumptions on information, although the implemen-
tation is not straightforward in our inferential setup, and we do not pursue formal testing in this article.

34Although our inferential methods require that we use a discretized set of covariates in estimation, in the policy
experiment we use for each market m the actual value of xprem and the value xpostm where the mall is removed.
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perform estimation under weak assumptions on information we assume that the data are
generated by BNE in the game Γxpre(θ0, S0) for some unspecified S0 ∈ S (see Assumption
2). Consistent with this approach, the model’s predictions are subject to two dimensions of
uncertainty. First, as we recover a confidence set Cn for ΘBCE

I , all parameters θ ∈ Cn are
candidates for generating predictions. Second, for a given θ, predicted outcomes are gener-
ated by convex combinations of BNEs in games Γxpost(θ, S), where the information structure
may be any S ∈ S. To capture the multiplicity of information structures and equilibrium
selection mechanisms, we rely on Lemma 1 and consider predictions generated by all BCE
distributions ν ∈ BCExpost(θ). As there are several ways of constructing predictions, we
give formal definitions in the next subsection.

7.1 Model Predictions

We are interested in predicting the probabilities of specific market structures. We de-
fine the model’s predictions as functions W of equilibrium distributions, parameters and
covariates. In particular, the predicted probability of market structure outcomes Ŷ ⊂ Y is

WŶ (ν, θ, x) =
∑
y∈Y

∫
1
{
y ∈ Ŷ

}
ν (y, ε)dε,

where the dependence on (θ, x) arises because ν ∈ BCEx(θ).
We consider several approaches to summarize predictions across equilibrium distribu-

tions and parameter values in {(ν, θ) : ν ∈ BCEx(θ), θ ∈ Cn}. The most conservative
prediction intervals have upper (lower) bounds constructed by maximization (minimiza-
tion) over all equilibrium distributions and parameters in the confidence set:

IxW =
[

min
{(ν,θ): ν∈BCEx(θ), θ∈Cn}

W (ν, θ, x) , max
{(ν,θ): ν∈BCEx(θ), θ∈Cn}

W (ν, θ, x)
]
.

When x is set to xpost, we denote the corresponding IxW as IpostW for ease of notation. To gain
further insight into the properties of our method, it is useful to separate the uncertainty
in prediction due to the multiplicity of parameters in Cn from the uncertainty due to
equilibrium multiplicity. To do so, we fix the value θ̂0 that minimizes Gn, and denote
IpostW (θ̂0) as the intervals that correspond to IpostW when Cn is reduced to θ̂0.

35

We also define upper bound probabilities for a generic predictionW , denoted asW (θ, x) =
maxν∈BCEx(θ)W (ν, θ, x). These are of particular interest when the predicted outcomes are
desirable for regulators, who may nudge firms to select equilibria that maximize the proba-

35This is subject to an important caveat. In our set-identified model θ̂0 is not more likely to be the true parameter
value than any other θ ∈ Cn. Hence this exercise is an illustration of the properties of the model, rather than an
empirical evaluation of the policy experiment.
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bility of such outcomes. Focusing on upper bounds is also in line with important articles in
the literature (Ciliberto and Tamer, 2009). Hence we compute for each θ ∈ Cn the difference
in W , averaged across markets, as:

∆W (θ) =

 1
|X̂|

∑
m∈X̂

W
(
θ, xpostm

)
− 1
|X̂|

∑
m∈X̂

W (θ, xprem )

 ,
where X̂ denotes the set of markets affected by the policy experiment, and then report
bounds across parameter values in the confidence set

IW =
[

min
{θ∈Cn}

∆W (θ) , max
{θ∈Cn}

∆W (θ)
]
.

7.2 Variable and Fixed Latent Information Structure

The predictions defined in the previous subsection do not restrict the latent information
structure after the policy experiment to be equal to S0, the information structure in the
DGP. We refer to this approach as variable latent information structure. This approach
may not fit all empirical settings. For instance, in our application removing malls may not
affect the information structure of the game between supermarket chains.

Thus we also pursue a fixed latent information structure approach, following Berge-
mann et al. (2022). This involves computing predicted outcomes compatible with BNEs of
Γxpost(θ0, S0), keeping S0 fixed. Bergemann et al. (2022) show that this approach is feasi-
ble by considering BCEs of the linked game. These equilibrium distributions specify how
players choose both y for the game in the data and predicted y′, imposing consistency with
common knowledge of the primitives and with incentives.

In our setting, the set of BCEs of the linked game ˜BCE
xpre,xpost(θ) contains augmented

equilibrium distributions ν̃ ∈ ∆(Y × Y × E). These need to be consistent with the prior,
incentive compatible for both factual and predicted actions, and consistent with the ob-
served outcomes. We modify functionsW as W̃ (ν̃, θ, xpre, xpost), so that predictions depend
on augmented equilibrium distributions ν̃. Appendix D.2 in the Supplementary Materials
contains formal definitions and an extended discussion of this approach.

For any generic value (x, x′), with latent information kept fixed as in the game with
covariates x, predicted intervals for the game with covariates x′ are thus

Ĩx,x
′

W̃
=

 min{
(ν̃,θ): ν̃∈ ˜BCE

x,x′ (θ), θ∈Cn
} W̃ (

ν̃, θ, x, x′
)
, max{

(ν̃,θ): ν̃∈ ˜BCE
x,x′ (θ), θ∈Cn

} W̃ (
ν̃, θ, x, x′

) .
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When (x, x′) are set to (xpre, xpost), we denote the corresponding Ĩx,x
′

W̃
as Ĩpost

W̃
for ease of

notation. Similarly, predicted intervals for the parameter θ̂0 are Ĩpost
W̃

(θ̂0).

7.3 Policy Experiment Results

We report in Figure 4 the intervals obtained by averaging across markets the endpoints
of IxW . Panel A represents probabilities of no entrants, and Panel B represents probabilities
of at least two entrants. Intervals for xpost (without mall) are solid lines, whereas intervals
for xpre (with mall) are dashed lines. The two intervals at the top of the two panels refer to
the model with weak assumptions on information, whereas the two intervals at the bottom
refer to the complete information model.

Figure 4: Probabilities of Market Structure Outcomes

(A) Average Interval IxW for the Probability
of No Entrants

(B) Average Interval IxW for the Probability
of at Least Two Entrants

Note: We represent the intervals obtained by averaging across markets the endpoints of IxW for two different outcomes:
the probability of no entry (A), and the probability of at least two entrants (B). The two green lines at the top refer to
the model with weak assumptions on information. The two red lines at the bottom refer to the model with complete
information. In each panel intervals IxW are represented as solid line segments for xpost and as dashed lines for xpre.

In the model with weak assumptions on information prediction intervals are wide. The
effect of removing malls from small markets is ambiguous: the average upper bound prob-
ability of observing no entrants decreases, but also the average upper bound probability of
observing at least two entrants decreases slightly. Thus, examining intervals IxW does not
give a definitive answer to our question of interest. 36 Although these results are obtained
with the variable latent information approach, changes in intervals for fixed latent infor-
mation are broadly similar, with an important difference further explored in Section 7.4:

36This result is not an artifact of averaging across markets, as it holds for most individual markets, and also holds
for other outcomes of interest, such as the expected number of entrants. See Figures A2 and A3 in the Supplementary
Materials for more details.
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the fixed latent information intervals are smaller than those obtained with variable latent
information. In contrast, the complete information model generates a sharper conclusion.
The intervals IxW obtained under the assumption of complete information indicate that re-
moving a mall from a small market may decrease the probability of no entrants, and may
increase the probability of at least two entrants.

We turn in Table 4 to the analysis of the changes in upper bound probabilities IW . In
the table we also report this object for the complete information model, for models with
restrictive assumptions on information, and for simple reduced form models.

Table 4: Predicted Change in Probability of Outcomes

Outcome Weak Assumptions Complete Info Perf Private Info Reduced Form
on Info - BCE - Nash - BNE

(I) (II) (III) (IV)

No Entry [−0.27, 0.24] [−0.56, 0.04] [−0.35,−0.23] [−0.23,−0.01]
−0.30 −0.10

At least 2 Players [−0.24, 0.42] [0.07, 0.40] [0.20, 0.27] [0.00, 0.29]
0.23 0.15

Entry by:
Cooperatives [−0.19, 0.40] [0.04, 0.70] [0.22, 0.33] [0.07, 0.37]

0.28 0.22
Italian Groups [−0.15, 0.60] [−0.17, 0.70] [0.15, 0.29] [−0.08, 0.28]

0.23 0.10
French Groups [−0.12, 0.56] [−0.16, 0.51] [0.05, 0.14] [−0.10, 0.12]

0.09 0.01

Note: We report in this table predicted changes in upper bound probabilities I
W

for different models. Columns
I and II correspond to I

W
for the model with weak assumptions on information and with complete information,

respectively. In column III we report the 95% confidence interval and point estimate for the model with
perfectly private information. In column IV we report 95% confidence intervals and point estimates for changes
in outcome probabilities obtained from simple parametric models. These are ordered probit regressions to
predict probabilities of no entry and Entry by at least 2 Players, and a probit regression to predict the binary
outcomes Entry by Cooperatives, Entry by Italian Groups, Entry by French Groups.

Predictions on the effect of removing malls as summarized by IW are overall inconclusive
for the model with weak assumptions on information, in line with the confidence sets and
with the evidence in Figure 4.37 Intervals for entry of at least two players and entry of
individual supermarket groups include negative values. This means that the upper bound
probabilities of these events may decrease upon removing malls.

Models with more restrictive assumptions on information yield a different conclusion.
The model with complete information in column II predicts a decrease of the probability
of no entry for most parameter values, and an increase in the probabilities of at least two
players operating in a market, or of entry by specific players. The predictions of the game-
theoretic model with perfectly private information (column III) and of the reduced form
model (column IV) are similar to the predictions of the complete information model.38 The

37Predictions for the fixed latent information structure approach are similar.
38The similarity between complete information predictions in column II and reduced form predictions in column IV

is not surprising: the ordered probit model we use to predict the probability of no entrants or at least two entrants is
analogous to a Bresnahan and Reiss (1991b) specification with homogeneous payoffs and complete information. More
generally, reduced form predictions can be interpreted as counterfactual predictions from a game-theoretic model
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models in columns III and IV are point identified, so that they yield point predictions of
IW . These are quite precisely estimated and in most cases close to the midpoints of the
intervals produced by the complete information model.

7.4 The Empirical Content of BCE: Informativeness of Predictions

A recurring theme in our policy experiments is that the model with weak assumptions on
information yields wide prediction intervals. This uncertainty in the model’s predictions de-
serves further investigation: intervals may be wide because of the the size of the confidence
set of parameters, or because of equilibrium multiplicity. The former source of uncertainty
may be addressed by better variation in the data or by adopting less conservative inferential
methods. Equilibrium multiplicity instead is a fundamental feature of the model, and is
linked to weak assumptions on information. In fact, in light of Lemma 1, the multiplicity
of BCEs reflects the many information structures and equilibrium selection mechanisms
that may have generated the data. Anchoring predictions to the unobserved information
structure in the DGP, as in the fixed latent information approach, may help reduce the
uncertainty in prediction stemming from multiple equilibria. Hence, in this subsection we
investigate to what extent the uncertainty in prediction is due to equilibrium multiplicity.
This is important to clarify the empirical content of BCE.

We first compare intervals IpostW with IpostW (θ̂0), the predictions that are obtained fixing
the parameter value at θ̂0, the parameter that minimizes the criterion function Gn. Fixing a
parameter value in the identified set removes the uncertainty stemming from partial identi-
fication. Table 5, Panel A reports average ratios |IpostW (θ̂0)|/|IpostW | and |Ĩpost

W̃
(θ̂0)|/|Ĩpost

W̃
| that

represent the relative width of prediction intervals computed at θ̂0 with respect to general
intervals (incorporating uncertainty due to Cn) for the variable and fixed latent information
approaches, respectively. The table shows that there is still considerable uncertainty in pre-
diction in our model even when we fix payoff parameters at θ̂0. Prediction intervals shrink
by about 28 percent on average for the variable latent information approach, and by about
37 percent on average for the fixed latent information approach. Despite the potential of
sharper inference and better data to reduce the width of prediction intervals, uncertainty
in prediction is an unavoidable cost associated with our approach.

The fixed latent information approach may mitigate this cost. To better understand
the role of fixing the latent information structure in our application, we compare prediction
intervals IpostW (θ̂0) and Ĩpost

W̃
(θ̂0) obtained by fixing the parameters at θ̂0. We report in Ta-

ble 5, Panel B the ratio |Ĩpost
W̃

(θ̂0)|/|IpostW (θ̂0)|, which represents how much the fixed latent
information approach shrinks prediction intervals relative to the variable latent information

under the assumption that the equilibrium selection rule in the counterfactual game stays "equivalent up to reduced
forms" to that of the games in the data (Canen and Song, 2021).
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approach.

Table 5: Relative Size of Prediction Intervals

Panel (A): Relative Size of IpostW and IpostW

(
θ̂0
)

Variable latent info ratio Fixed latent info ratio
No Entrants At least Two Entrants No Entrants At least Two Entrants

0.74 0.71 0.68 0.58

Panel (B): Relative Size of Ipost
W̃

(
θ̂0
)
and IpostW

(
θ̂0
)

No Entrants At least Two Entrants Coop Entry Ita Entry Fr Entry
0.88 0.78 0.91 0.54 0.92

Note: We report the average (across markets) of ratios |IpostW (θ̂0)|/|IpostW | and |Ĩpost
W̃

(θ̂0)|/|Ĩpost
W̃
| in panel A, and

of ratios |Ĩpost
W̃

(θ̂0)|/|IpostW (θ̂0)| in panel B. All intervals are computed for the value θ̂0 which minimizes the em-
pirical criterion function. See Tables A3 and A4 in Supplementary Materials for a market-by-market breakdown.

Overall, the fixed latent information method delivers an average reduction of about 20
percent in the width of prediction intervals. For some outcomes the effect is larger: for the
probability of entry of Italian groups, intervals are shrunk by almost 50 percent. The fixed
latent information approach of Bergemann et al. (2022) is thus an useful tool to deliver
sharper predictions in this class of models.

Three main conclusions emerge from our policy experiment. The first concerns the
answer to our empirical question in this application: what is the effect of large malls on
supermarkets? Our data - read through the lens of a flexible model - do not dispel the
uncertainty. In particular, our results do not rule out that the presence of malls in small
markets may have positive spillovers for supermarkets, and caution against any policy that
limits the presence of malls.

The second takeaway is that assumptions on information, maintained both in estimation
and in prediction with empirical discrete games, have a large effect. The method developed
in this article allows researchers to weaken assumptions on information, thus transparently
showing what conclusions are robust and which ones are driven by assumptions. In our
application, models with either complete information or perfectly private information sug-
gest that removing malls may improve market outcomes in the supermarket industry. This
conclusion does not stand when we remove strong restrictions on information.

Finally, we find that the robustness provided by our approach comes at the cost of un-
certainty in prediction. This uncertainty, although partly due to the lack of variation in
the data of our application, is mostly a by-product of the agnostic approach to information
that we maintain in estimating payoff parameters and predicting counterfactual outcomes.

8 Conclusion

We present in this article a method to estimate empirical discrete games under weak as-
sumptions on the information available to players about each other’s payoffs. Assumptions
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on information matter, because the equilibrium predictions implied by different information
structures result in parameter estimates that may be biased if the information structure is
misspecified. We avoid strong assumptions on information by adopting Bayes Correlated
Equilibrium (BCE), defined by Bergemann and Morris (2013, 2016), as solution concept. We
argue that BCE is weak enough to make our method robust to assumptions on information,
but informative enough to yield useful confidence sets for parameters. In an application,
in which we study the effect of large malls on competition among supermarket groups, we
show that assumptions on information may drive the results of policy experiments, whereas
our method avoids restrictive assumptions.

We conclude with two avenues for future research left open by this article. First, we do
not pursue in this article inference on information structures. Although trying to recover an
information structure from data on binary outcomes may be too optimistic, richer data like
those generated by play in games with continuous actions may allow researchers to identify
the information structure of the game that generates the observable outcomes. Second,
estimation of games under the BCE solution concept may be interesting beyond providing
robustness to assumptions on information - the angle we explored in this article. Results in
the theory of learning in games (e.g., Hart and Mas-Colell, 2013) establish regret-minimizing
dynamics as a foundation for correlated equilibrium. Based on this insight, in ongoing
work Lomys, Magnolfi, and Roncoroni (2021) suggest that BCE captures well outcomes of
long-run interaction in incomplete information games, thus providing a connection between
dynamic play and a static solution concept.
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Appendix

A Computation of G and Gn

To find the identified set and perform inference we need to compute the functions G and
Gn. In this appendix we describe the steps necessary to compute these functions defined in
Section 4.2. At the core of both G and Gn there is the maxmin program

max
b∈B

min
q∈QBCE

θ
(x)

[
bTPy|x − bT q

]
, (P0)

which must be computed for every value of x.
Step 1 - Discretization: To make (P0) feasible we approximate the infinite dimensional

object ν by discretizing the set E = ×iEi. Let Er ⊂ E be the discretized set, with |Er| = r.
We construct Er as the product space of Eri ⊂ Ei, where every set Eri contains ri = r

|N | equally
spaced quantiles of Fεi .39 We also define f r(·; θε) as the probability mass function over Er,
where the mass of each ε ∈ Er is generated by Fεi and a normal copula with correlation
parameter ρ = θε. The program (P0) is then approximated by the feasible program

max
b∈R|Y |

min
q∈R|Y |, ν∈R|Y |×r

bT
(
Py|x − q

)
(P1)

s.t. bT b− 1 ≤ 0

∀y ∈ Y q (y)−
∑
ε ν (y, ε) = 0

∀ε ∈ Er
∑
y ν (y, ε)− f r (ε; θε) = 0∑

y,ε ν (y, ε)− 1 = 0

∀i, yi, y′i, εi
∑
y−i

∑
ε−i ν (y, εi, ε−i) (πi (y′i, y−i, εi;x, θ)− πi (y, εi;x, θ)) ≤ 0.

Although in (P0) the minimum is taken over q ∈ QBCEθ (x) only, here we minimize over
both a vector of predictions q ∈ PY and a distribution ν ∈ PY×Er whose marginal over Y
corresponds to q. The restriction that q must be a BCE prediction is now incorporated by
imposing that ν must satisfy the constraints of Definition 2.

Step 2 - Vectorization: The discretized ν is a matrix with dimensions |Y | × r; we define
v = vec(ν), the vectorized ν that stacks the columns of ν in a vector with dν = |Y | · r rows.

We then transform (P1) by defining new variables p̃ = Py|x−q and z =
[
z1
z2

]
=
[
p̃

v

]
. As

the set of predictions is a subset of the (|Y |−1)-dimensional simplex, we modify the objective
39We have experimented with other discretization techniques (e.g., Halton sets, random draws) and have found

negligible impact on our results as long as Er includes at least some relatively extreme (both positive and negative)
payoff types. Including such values of payoff types is important because for them the incentive compatibility constraint
of BCE is more likely to be binding.
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of the program to
[
b̃

0

]T (
Py|x − q

)
, where b̃ is a vector in the (|Y | − 1)−dimensional closed

ball. As argued in footnote 17, this modified objective yields a value of zero if and only if
the original program has a value of zero. The transformed program is

max
b̃∈R|Y |−1

min
z1∈R|Y |,z2∈Rdν+

[
b̃

0dν+1

]T
z, (P2)

s.t. b̃T b̃ ≤ 1

Aeqz = a

Aineqz ≤ 0dineq ,

where Aeq and Aineq are matrices that stack, respectively, linear equality constraints and
linear inequalities. These matrices have deq = |Y |+r+1 and dineq =

∑
i∈N (|Yi| · |Yi−1| ·ri)

rows, respectively. The object a is a vector of constants, and we use 0d, 1d and Id to denote,
respectively, the d−vector of zeros and ones, and the d × d identity matrix. To construct
the matrix Aeq, notice that the equality constraints in (P1) can be written as

I|Y |p̃+A1
eqv = Py|x, A2

eqv = f r (θε) , 1Tdvv = 1,

where A1
eq is a matrix of r copies of a I|Y |, or A1

eq = 1Tr ⊗ I|Y |, and A2
eq is a block-diagonal

matrix with r rows and 1T|Y | on the diagonal, or A2
eq = Ir ⊗ 1T|Y |. The deq × dz matrix Aeq

is then

Aeq =

 I|Y | A1
eq

0(r·|Y |) A2
eq

0T|Y | 1Tdv


with dz = |Y | · (r + 1); a is a deq−vector defined as

a =

 Py|x
f r (θε)

1

 .
The inequality constraints in (P1) are also linear, so that Aineq can be constructed in a
similar way.

Step 3 - Duality and Maximization Program: Although (P2) is in the form of a maxmin
problem, it can be transformed into a maximization problem by considering the dual of the
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inner minimization:

max
b̃∈R|Y |−1,λeq∈Rdeq ,λineq∈R

dineq
+

−
[

a

0dineq

]T [
λeq
λineq

]
(P3)

s.t. b̃T b̃ ≤ 1(
AT
)

1:|Y |

[
λeq
λineq

]
= −

[
b̃

0

]
(
AT
)
|Y |+1:dz

[
λeq
λineq

]
≥ 0dν ,

where A stacks Aeq and Aineq, the vectors λeq and λineq are the dual variables associated
to the constraints of (P2), (AT )1:|Y | and (AT )|Y |+1:dz denote the first |Y | and the last r · |Y |
rows of the matrix AT . By strong duality and existence of BCE, (P3) has the same value
than (P2) and we compute it using the solver KNITRO in AMPL.

Computational Burden: - Due to the tractable nature of (P3), the computational bur-
den of mapping BCE identified sets and confidence intervals is manageable. For example,
computation of G (θ) for the two-player game of Table 2 with r = 502 takes less than 30
seconds of CPU time on a 3.4Ghz processor. Computation times for the function Gn(θ) in
our application, with r = 103, are similar. The total time necessary to map the identified
set or confidence sets depends - for a fixed dimension of the problem - on the extent to
which parallelization is implemented.40

Computing time also depends on the dimension of the game (i.e. number of players and
number of strategies) and on the discretization adopted. The dimension of the program (P3)
- which needs to be solved for every value of x - is determined by the number of variables

|
(
b̃T , λTeq, λ

T
ineq

)
| = |Y | − 1 + deq + dineq

= 2|Y |+ r

(
1 +

∑
i∈N

(|Yi| · |Yi − 1|)
)
,

and the number of equality constraints |Y |, and inequality constraints r · |Y |. The exact
relation between computing time and the scalars r, |Y | and |N | depends on the computing
environment, but (as it is common in this class of models) the computational burden grows
fast with the dimensions of the game. Further details on how to compute ΘI and Cn are in
Appendix C in the Supplementary Materials.

40Although parallel computation of G(θ) for different values of θ is not natively supported by AMPL, it can be im-
plemented using the script Parampl (Olszak and Karbowski, 2018), available at www.parampl.com. We thank
Arthur Olszak for kind and patient support with Parampl.
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B Proofs

We first establish as Remark 1 the convexity property of the setsBCEx(θ) andQBCE
θ (x) .

Remark 1. The sets BCEx (θ) and QBCE
θ (x) are convex for any x and θ.

Proof. Consider the equilibrium distributions ν1 and ν2 in BCEx (θ) . Let να = αν1 +
(1− α) ν2 for α ∈ (0, 1) . Then, να is consistent with the prior game since for all ε ∈ E

∑
y∈Y

∫
[e≤ε]

να (y, e, ) de =
∑
y∈Y

∫
[e≤ε]

[αν1 (y, e, ) + (1− α) ν2] de

=
∫

[e≤ε]
dF (e; θε) t,

where the second equality follows since ν1, ν2 ∈ BCEx (θ). Moreover, να is incentive com-
patible since for all i, εi, y such that ν (yi | εi) > 0 we have

Eνα [πi (yi, y−i, εi;x, θπ) | yi, εi]

= αEν1 [πi (yi, y−i, εi;x, θπ) | yi, εi] + (1− α)Eν2 [πi (yi, y−i, εi;x, θπ) | yi, εi]

≥ Eν
[
πi
(
y′i, y−i, εi;x, θπ

)
| yi, εi

]
, ∀y′i ∈ Yi,

where the equality follows from the linearity of the expectation operator, and the inequality
follows from the incentive compatibility property of ν1, ν2. Hence, BCEx (θ) is convex.

Consider instead q1, q2 ∈ QBCE
θ (x) . By construction, there must exist distributions

ν1, ν2 ∈ BCEx (θ) that correspond to the predictions q1, q2. For any prediction qα = αq1 +
(1− α) q2, α ∈ (0, 1) we can then construct a corresponding distribution να such that

qα =
∫
E

[αν1 (y, ε) + (1− α) ν2 (y, ε)] dε,

=
∫
E
να (y, ε) dε,

and να ∈ BCEx (θ) since BCEx (θ) is convex. Hence, qα ∈ QBCE
θ (x) and QBCE

θ (x) is
convex.

Lemma 1 is a preliminary result needed to prove Proposition 1. In the lemma we restate
and adapt to our context the robust prediction property of BCE, established as Theorem 1
in Bergemann and Morris (2016).

Lemma 1. For all θ ∈ Θ and x ∈ X,

1. If q ∈ QBCE
θ (x) , then q ∈ QBNE

θ,S (x) for some S ∈ S.
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2. Conversely, for all S ∈ S, QBNE
θ,S (x) ⊆ QBCE

θ (x) .

Proof. Fix θ ∈ Θ and x ∈ X throughout.
1. Consider q ∈ QBCE

θ (x) . Then there exists ν ∈ BCEx(θ) such that q = qν . We need
to show that there exists an information structure S and a strategy profile σ such that
qσ = qν and qσ ∈ QBNE

θ,S (x) . To this aim, let T x = Y and define a probability kernel{
P xτ |ε : ε ∈ E

}
41 such that

∫
E

(
Pτ |ε ([τ = y])

)
dF = ν (y,E) , ∀E ∈ B (E) :

∫
E

dF > 0, y ∈ Y.

Also, for all εi, τi, let σi (ε, τi) (yi) = 1 if yi = τi, and σi (εi, τi) (yi) = 0 if yi 6= τi. Hence, the
incentive compatibility conditions of BCE guarantee that σ is a BNE of the game Γx (θ, S).

2. Suppose that q =
∑K
k=1 αkqk ∈ QBNE

θ,S (x) for K < ∞, positive weights αk such
that

∑K
k=1 αk = 1 and predictions qk each corresponding to a σk ∈ BNEx(θ, S) for all

k = 1, ...,K. Then, for each σk we can obtain νk ∈ BCEx(θ) as

νk (y,E) =
∫
E

∫
T

(∏
i∈N

σi (εi, τi) (yi)
)

dPτ |εdF,

for all y ∈ Y and E ∈ B (E). Hence,
∑
k αkνk = ν ∈ BCEx(θ), and the corresponding

qν = q ∈ QBCE
θ (x).

Proposition 1. (Robust identification) Let Assumptions 1 - 2 hold. Then

ΘBCE
I = ΘBNE

I (S) .

Proof. Let θ ∈ ΘBNE
I (S). Then ∃ S ∈ S such that Py|x ∈ QBNE

θ,S (x) Px − a.s. Since, by
Lemma 1 again, we have QBNE

θ,S (x) ⊆ QBCE
θ (x), θ ∈ ΘBCE

I and ΘBNE
I (S) ⊆ ΘBCE

I . Consider
instead θ ∈ ΘBCE

I ; by definition of ΘBCE
I , there must be a collection of (νx)x∈X: such that

pνx ∈ QBCE
θ (x). It follows that, by Lemma 1, pνx ∈ QBNE

θ,S (x) Px − a.s. for some S ∈ S.
Hence, ΘBCE

I ⊆ ΘBNE
I (S). Moreover, by Assumption 2, Py|x ∈ QBNE

θ0,S0
(x) almost surely

with respect to Px. Also, by Lemma 1, QBNE
θ0,S0

(x) ⊆ QBCE
θ0

(x).

Proposition 2. Assume that:

1. The function θπ → πi (y, εi;x, θπ) is continuous for all i, x, y and εi, the quantity

|πi (yi, y−i, εi;x, θπ)− πi
(
y′i, y−i, εi;x, θπ

)
|

is bounded above, and the function θε → F (·; θε) is continuous for all ε;
41For the existence of such a kernel, see Chang and Pollard (1997).
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2. The parameter space Θ is compact;

3. The following uniform convergence condition holds: supθ∈Θ
√
n|Gn (θ) − G (θ) | =

Op (1) ;

4. For all θ ∈ ΘI we have nGn = Op (1).

Then, the set Θ̂BCE
I = {θ ∈ Θ : nGn (θ) ≤ an} is a consistent estimator of ΘBCE

I for an →
∞ and an

n →∞.

Proof. We want to show that our setup satisfies the condition C.1 in Chernozhukov et al.
(2007); the consistency of Θ̂I follows by their Theorem 3.1. To this aim, we need to establish
that the function G (θ) is lower semicontinuous.

We start by showing that θ ⇒ QBCE
θ (x) is upper hemi-continuous for all x ∈ X. This

correspondence is a compound correspondence between the BCE equilibrium correspon-
dence θ ⇒ BCEx(θ) and the marginal operator ν →

∫
E ν (y,dε). The latter is a continuous

function mapping into a compact set. For the the equilibrium correspondence: consider
a sequence θk → θ ∈ Θ, for

{
θk
}∞
k=1
∈ Θ, and a corresponding sequence {νk}∞k=1 such

that νk ∈ BCEx(θk) for all k, and νk converges to ν. To see that ν ∈ BCEx(θ̄), notice
that (i) consistency of ν follows for the continuity of the function θε → F (·; θε) and abso-
lute continuity of the marginal operator, and (ii) incentive compatibility of ν results from
the continuity of θπ → πi(·;x, θπ) (this can be shown by contradiction, as in Milgrom and
Weber, 1985). Therefore the correspondence QBCE

θ is upper hemi-continuous.
Then, the function

h̃ : θ → h
(
b;QBCE

θ (x)
)

= sup
q∈QBCE

θ
(x)
bT q

is upper semicontinuous (Lemma 17.30 in Aliprantis and Border, 1994), for all values of
x, b. It follows that the function θ → −h

(
b;QBCE

θ (x)
)
is lower semicontinuous, and so is

θ → supb∈B
(
bTPy|x − h

(
b;QBCE

θ (x)
))

, point-wise supremum of a family of lower semicon-
tinuous functions (Proposition 2.41 in Aliprantis and Border, 1994). Hence, the function
G (θ) is lower semicontinuous: for a sequence θn → θ in Θ

lim inf
n→∞

G (θn) = lim inf
n→∞

∫
sup
b∈B

[
bTPy|x − h

(
b;QBCE

θn (x)
)]

dPx

≥
∫

lim inf
n→∞

sup
b∈B

[
bTPy|x − h

(
b;QBCE

θn (x)
)]

dPx

≥
∫

sup
b∈B

[
bTPy|x − h

(
b;QBCE

θn (x)
)]

dPx = G (θ)

44



where the first inequality holds by Fatou’s Lemma, and the second inequality holds for the
lower semi continuity of θ → supb∈B

(
bTPy|x − h

(
b;QBCE

θ (x)
))

.

Assumption 3. (Two-player entry game with linear payoffs) Let |N | = 2 and Y = {0, 1}2 ;
let payoffs be

πi (y, εi;x, θπ) = yi
(
xTc β

C + xTi β
E
i + ∆−iy−i + εi

)
.

Assume moreover:

1. Vectors of covariates are partitioned as x = (x1, x2, xc) ∈ X1×X2×XC = X, and the
distribution Px is such that xi has everywhere positive Lebesgue density conditional
on xc, x−i, for i = 1, 2, and there exists no linear subspace E of Xi × XC such that
Px (E) = 1.

2. Payoff types (ε1, ε2) are independent of covariates x, and distributed according to an
absolutely continuous cdf F (·; θε), defined on E = R2.

Proposition 3. Suppose the researcher observes the distribution of the data
{
Py|x : x ∈ X

}
,

generated by BCE play of a game. Then, under Assumption 3,

1. Payoff parameters βC , βE and ∆ are point identified as in single-agent threshold cross-
ing models; and

2. The structure implies bounds on the payoff type parameter θε.

Proof. 1. Consider first the identification of βC , βE2 . We want to show that, for appropriate
values of x, we have

Py2=1|x =
∫
{ε2:ε2≥−xTc βC−xT2 β

E
2 }

dF2 (·; θε) , (B.1)

where Fi (·; θε) is the marginal over εi of F (·; θε). The model implies the following link
between the observables and the structure, for all x ∈ X and νx ∈ BCEx(θ)

Py2=1|x = νx ([y1 = 1, y2 = 1]) + νx
([
y1 = 0, y2 = 1, ε : ε2 < −xTc βC − xT2 βE2

])
+

+ νx
([
y1 = 0, y2 = 1, ε : ε2 ≥ −xTc βC − xT2 βE2

])
Assume βE1k > 0 without loss of generality, and let x1k → −∞. Conditional on such values
of x, π1 (1, y2, ε1;x, θπ) < 0 for all values of y2 ε1 − a.s. By the equilibrium optimality
condition, νx (y1 = 1 | y2, ε1) = 0 whenever π1 (1, y2, ε1;x, θπ) < 0. It follows that

lim
x1k→−∞

νx ([y1 = 1, y2 = 1]) ≤ lim
x1k→−∞

∫
E1
νx ([y1 = 1] |ε1) dF1 (·; θε) = 0.
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Moreover, limx1k→−∞ ν
x
([
y1 = 0, y2 = 1, ε : ε2 < −xTc βC − xT2 βE2

])
= 0, as in the limit

ε2 < −xTc βC −xT2 βE2 implies y2 = 0. For a similar application of the incentive compatibility
property of BCE,

νx
([
y1 = 0, y2 = 1, ε : ε2 ≥ −xTc βC − xT2 βE2

])
=
∫
{ε2:ε2≥−xTc βC−xT2 β

E
2 }

dF2 (·; θε) .

The result in Equation (B.1) follows; this equation describes a single-agent threshold cross-
ing model: under Assumption 3,

(
βC , βE2

)
and Fi are point identified (Manski, 1988).

Player 1’s parameter β1 is identified by a symmetric argument. To prove identification of
∆ parameters, consider instead x1k →∞; the same steps lead to

lim
x1k→∞

Py2=1|x =
∫
{ε2:ε2≥−xTc βC−xT2 β

E
2 −∆1}

dF2 (·; θε) .

2. Let θπ = (β,∆) be identified. We can derive (non-sharp) bounds on the distribution
of observable outcomes, and thus on the joint distribution of payoff types F (ε; θε) . To
construct lower bounds on the probabilities of outcomes, we need to define regions where
such outcomes are the product of dominant strategies. For instance, let

E(1,1) (x, θ) =
{
ε1 ≥ −xTc βC − xT1 βE1 −∆2, ε2 ≥ −xTc βC − xT2 βE2 −∆1

}
.

For any x ∈ X, Definition 2 implies that for ε ∈ E(1,1) we have νx([y = (1, 1)] | ε) = 1 for
every νx ∈ BCEx(θ). We can similarly define a region Ey(x, θ) for any action profile y.

For each y, we can also construct upper bounds by defining regions where for any i, no
yi is dominated. Hence, let

Ey (x, θ) =
{
ε : max

νx∈BCEx(θ)
νx (y | ε) > 0

}
;

for the outcome y = (1, 1) for instance,

E(1,1) (x, θ) =
{
ε1 ≥ −xTc βC − xT1 βE1 , ε2 ≥ −xTc βC − xT2 βE2

}
.

We can then construct the bounds

LBy (θε;x) =
∫
Ey

dF (·; θε) ≤ Py|x ≤
∫
Ey(x,θ)

dF (·; θε) = UBy (θε;x) ,

and define the set BD(y) = {θε : LBy(θε;x) ≤ Py|x ≤ UBy(θε;x), a.e.− x}. Variation in x
shifts the regions E and E , thus providing useful restrictions on θε and shrinking the set of
parameters ∩y∈YBD(y) that are compatible with the bounds.
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Supplementary Materials - For Online Publication

C Further Computational Details: Identification and Esti-
mation

C.1 Computation of the Set of BCE Predictions

We describe here the computation of the set of BCE predictions shown in Figure 2 in the
article. For the simple one-parameter game in Example 6, the figure represents the simplex
and sets of BCE and BNE predictions for different assumptions on information. Since the
computation of BNE outcomes in discrete games is standard, we focus on how to compute
and draw the set:

QBCE∆ =
{
q ∈ PY : ∃ ν ∈ BCE(∆) such that q =

∫
E
ν (y, ε) dε

}
,

for ∆ = −1/2.1

First, notice that - since the set of BCE distributions is convex - this set can also be
described as the convex hull of infinitely many extreme points. Such extreme points, for
any direction b ∈ B, where B denotes the closed unit ball centered at zero in R|Y |, are

q (b) = arg sup
q∈QBCE

θ
(x)
bT q,

so that - by using the property of the support function already used in Section 4.1:

q ∈ QBCE
θ (x)⇐⇒ bT q ≤ bT q (b) ∀ b ∈ B

we have that:
QBCE∆ = co {q (b) | b ∈ B} .

To feasibly compute QBCE∆ we proceed in two steps. First, we approximate it as a convex
polyhedron by discretizing the set B. Formally, we consider Bs ⊂ B as the discretized set,
with |Bs| = s. We set s = 200 to draw Figure 2. Second, we compute for each b ∈ Bs the

1The discussion here, although specialized to the game of Example 6 in the article, is more general and can be
applied to drawing any set QBCEθ corresponding to a known payoff structure.
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value q (b) as the arg max of the following program:

max
q∈R|Y |, ν∈R|Y |×r

bT q (PPoly)

s.t.

∀y ∈ Y q (y)−∑ε ν (y, ε) = 0

∀ε ∈ Er
∑
y ν (y, ε)− f r (ε; θε) = 0∑

y,ε ν (y, ε)− 1 = 0

∀i, yi, y′i, εi
∑
y−i

∑
ε−i ν (y, εi, ε−i) (πi (y′i, y−i, εi;x, θ)− πi (y, εi;x, θ)) ≤ 0.

This is a linear program, which can be solved with any LP solver. We use the solver
KNITRO in AMPL, but found similar results with CPLEX. Finally, we draw Figure 2 by
representing the set

Q̌BCE∆ = co {q (b) | b ∈ Bs}

using Matlab’s MPT Toolbox (Kvasnica, Grieder, Baotić, and Morari, 2004).

C.2 Computation of Identified Sets ΘBCE
I

We describe in this appendix how to compute ΘBCE
I to construct Figure 3 and Table 2

in the article. The identified set is defined in Section 3 as:

ΘBCE
I = {θ ∈ Θ : G (θ) = 0} ,

where G (θ) =
∫
X supb∈B

[
bTPy|x − h

(
b;QBCE

θ (x)
)]

dPx. Appendix A outlines how to com-
pute G (·), and the choice of discretization for E ; we denote with Ǧ (·) the computed G(·).

As a high-dimensional search over the whole set Θ is infeasible, we conduct a search over
a subset Θ̌. Moreover, since by construction Ǧ (·) > 0, we specify a threshold and report
the computed analog of the identified set:

Θ̌BCE
I =

{
θ ∈ Θ̌ : Ǧ (θ) ≤ cI

}
.

There is no general rule to construct an upper bound for this discretization error that is
valid for every game and data generating process. However, for the two-player binary game
with independent payoff types considered in Table 2, r−1 (where r is the dimension of the
discrete grid of εi that we use to compute Ǧ (·)) is an upper bound of the discretization error
if we restrict QBCE

θ (x) to QPSNE
θ (x) . Since r−1 is representative of the order of magnitude

of the discretization error, we use cI = r−1. Our findings on the informativeness of identified
sets are similar if we use higher values for cI .
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To construct Θ̌, we proceed sequentially. We first specify Θ̌1 as a large Halton set of
points around θ0, then find:

Bds =
[(

min
θk

{
θ ∈ Θ̌1 : Ǧ (θ) ≤ cI

})
k=1,...,dΘ

,

(
max
θk

{
θ ∈ Θ̌1 : Ǧ (θ) ≤ cI

})
k=1,...,dΘ

]

and construct Θ̌2 as another Halton set within Bds × 1.2. This procedure is aimed at
constructing more precise boundaries for the identified set. Increasing the umber of points
in Θ̌1 and Θ̌2 increases the precision in the computation of the identified set, at the cost of
computing time. For Table 2, we use |Θ̌1| = 20, 000 and |Θ̌2| = 5, 000.

C.3 Computation of Identified Sets ΘBNE
I

(
S
)

In Figure 3 in the main text we compute the sharp identified set under the assumption
of complete information and Nash equilibrium behavior, allowing for mixed strategies. The
sharp identified set for this case can be obtained by first defining the criterion function:

GMXNE (θ) = sup
b∈Dir

bTPy|x − sup
p∈QMXNE

θ
(x)
bT p


+

(A1)

where Dir denotes the core-determining class (Galichon and Henry, 2011) and QMXNE
θ (xj)

contains the Nash equilibrium predictions for a game with covariates x and parameters θ.
Since Dir is a discrete set, the computation of GMXNE is simple for games with a small
number of players and actions. Then, we have:

ΘBNE
I

(
S
)

=
{
θ ∈ Θ̌ : GMXNE (θ) = 0

}
.

Figure 3 also shows the the identified sets under different behavioral assumptions, R1
and R2. The computation of the corresponding identified sets is analogous to our description
of the construction of ΘBNE

I

(
S
)
. Under the assumptions of R1 and R2, respectively, we

obtain the functions GR1 and GR2 by substituting QR1
θ (x) and QR2

θ (x) for QMXNE
θ into the

function GMXNE . Notice that, as the set of predictions is relatively simple, the computation
of QMXNE

θ (as well as of QR1
θ (x) and of QR2

θ (x)) does not involve numerical simulation of
the values of ε.

C.4 Computation of Confidence Sets Cn for ΘBCE
I

We begin by discretizing the space of covariates in three steps. First, we compute the me-
dian of market size and code a binary variable Dm = 1 {market sizem ≥Median}. Second,
we consider the set M̃ of all combinations of Dm and of the other four discrete regressors in
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our model (home-region dummies for each player, and presence of large malls), and classify
each market m as one such combination m̃. Out of 25 such bins m̃, 20 contain a positive
number of markets m. Finally, for each m̃ we compute discretized values of market size as

market sizem̃ = 1
|m̃|

∑
m∈m̃

market sizem.

We end up with a discretization of the market size variable with 20 distinct values. This pro-
cedure preserves the correlations of entry patterns with the exogenous variables in the data.

To construct a confidence set s Cn for parameters in the identified sets ΘBCE
I we follow

the procedure outlined in Ciliberto and Tamer (2009). The procedure is based on the values
of the empirical criterion Gn, whose computation is described in Appendix A. We compute
the confidence set via the following steps:

1. We construct deterministic parameter grids using Halton sets around the parameter
values of probit regressions, and select among these 40 starting points for a simulated
annealing routine, which runs for 10,000 iterations.

2. We collect all the parameters visited by simulated annealing, and consider the cor-
responding set Θ̌ as an approximation of Θ. We define as gn = minθ′∈Θ̌Gn (θ′) , and
can then obtain for all θ ∈ Θ̌:

G̃n (θ) = Gn (θ)− gn.

3. We extract T = 100 subsamples of size nt = n/4. Subsample size can be an important
tuning parameter in this class of models, as argued by Bugni (2016). We follow
Ciliberto and Tamer (2009) in the choice of this parameter. For each subsample s, we
compute the criterion function using the subsampled observations, so that:

Gsn (θ) = 1
nt

nt∑
j=1

sup
b∈B

[
bT P̂ sy|xj − h

(
b;QBCE

θ (xj)
)]
,

and then we find gsn = minθ∈ΘG
s
n (θ) running a Nelder-Mead algorithm.

4. We choose the cutoff value ĉ0 = ngn × 1.25, and define the set:

Θ̂I (ĉ0) =
{
θ ∈ Θ̌ : nG̃n (θ) ≤ ĉ0

}
.

5. For all θ ∈ Θ̂I (ĉ0) , we obtain then G̃sn (θ) = Gsn (θ) − gsn and the threshold ĉ1 (θ) as
the 95th percentile of the distribution across subsamples of the statistic ntG̃sn. We
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compute then
ĉ1 = sup

θ∈Θ̂I(ĉ0)
ĉ1 (θ) ,

and
Θ̂I (ĉ1) =

{
θ ∈ Θ̌ : nG̃n (θ) ≤ ĉ1

}
.

6. Iterating steps 4,5 we obtain ĉ2 and report the confidence set:

Cn =
{
θ ∈ Θ̌ : nG̃n (θ) ≤ min ĉ2

}
.

Further iterations of this procedure do not alter significantly our results.

We report results for confidence sets for parameters in the identified sets. For both ΘBCE
I

and ΘBNE
I

(
S
)
, constructing confidence sets for the identified set, as opposed to construct-

ing confidence sets for all points in the identified set, yields similar results (as in Ciliberto
and Tamer, 2009).

C.5 Computation of Confidence Sets for ΘBNE
I

(
S
)

The construction of the confidence set for parameters in ΘBNE
I

(
S
)
is analogous to the

procedure followed to compute the confidence set under the assumption of BCE behavior,
except that it is based on the empirical criterion function:

GPSNE
n (θ) = 1

n

n∑
j=1

sup
b∈Dir

bT P̂y|xj − sup
q∈QPSNE

θ
(xj)

bT q


+

,

where Dir contains vectors corresponding to core-determining class (Galichon and Henry,
2011) and QPSNE

θ (xj) contains the pure-strategy Nash equilibrium predictions for a game
with covariates xj and parameters θ. We limit Nash equilibria to pure-strategy to maintain
the parallel with Ciliberto and Tamer (2009), but the extension to mixed strategy is imme-
diate and can be done by considering the empirical analogue of (A1). The confidence set for
parameters identified under the assumption of pure-strategy Nash equilibrium and complete
information is obtained going through the same steps 1.-6. described for the computation
of Cn, where Gn is substituted with GPSNEn .

C.6 Computation of Perfectly Private Information Estimates

In the context of the model of our application in Section 6, we compute parameter
estimates for a perfectly private information model θ̂ (S). To apply standard methods in
the literature we maintain the following assumptions:
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• The information structure is S = S,

• Payoff types are iid type-1 EV,

• The data are generated by an unique equilibrium σx for each x ∈ X.

The two latter assumptions impose strong restrictions on the payoff structure and on equi-
librium selection that we do not maintain in either the general model of Section 2, or the
application of Section 6 of the paper.

Under these assumptions, suppose that behavior is defined by the BNE strategy profile
σx; for each player i, let σ̃xi be the equilibrium probability of entry derived from σxi . Define
moreover the deterministic part of expected payoffs as:

ΠE
i (x, θπ, σ) = EσΠi (y−i;x, θπ)

=
∑
y−i

Πi (y−i;x, θπ) σ̃x−i (y−i)

= xTimβi +
∑
j 6=i

∆j σ̃
x
j .

The definition of BNE implies that, for all yi such that σ̃xi (yi) > 0 we have that

σ̃xi =
∫
{εi|ΠEi (x,θπ ,σ)+εi>0}

1 {εi = ei} dF (ei) ,

= Φ
(
xim, σ̃

x
−i;β,∆

)
.

and using the EV distributional assumption, this becomes:

σ̃xi =
exp

{
xTimβi +∑

j 6=i ∆j σ̃
x
j

}
1 + exp

{
xTimβi +∑

j 6=i ∆j σ̃xj

} . (A2)

This expression motivates two estimation strategies: the first adopts a Maximum Likeli-
hood approach (Su, 2014); the second adopts instead a two-step approach (Bajari, Hong,
Krainer, and Nekipelov, 2010). We use the former to produce the estimates in the pa-
per.

Maximum Likelihood Estimation - Su (2014) - We can reinterpret Equation (A2) as the
equilibrium map σx = Φ (σx;x, θπ) , and can thus form the likelihood function of the data:

L (σ;x, y) =
∑
i,m

{yim × log (σxmi ) + (1− yim)× log (1− σxmi )} .
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To perform estimation we adopt an MPEC approach by recovering:

θ̂π = arg max
θπ ,σ

L (σ;x, y)

s.t. σx = Φ (σx;x, θπ) ∀x.

Standard errors can be derived analytically or obtained via bootstrap. Notice that for this
method we need a discrete set of covariates X; we proceed to discretize the set as we do for
the estimation of confidence sets under weak assumption on information.

Two Step Estimation - Bajari et al. (2010) - Assume that there are firm-specific covari-
ates: hence, for each player i, we have that Πi (y−i;xm, θπ) = Πi (y−i;xim, θπ) . Then, we can
first recover estimates of (marginals of) equilibrium strategies; in our context this is equiva-
lent to recovering how entry probabilities vary as a function of x. This can be done by esti-
mating for each player a function σ̂i (x) = Pr (yi = 1|x) , for instance by fitting a linear model
with OLS. In a second step, we plug the first-step estimates into Equation (A2) and obtain:

Pr {yi = 1} =
exp

{
xTimβi +∑

j 6=i ∆j σ̂
x
j

}
1 + exp

{
xTimβi +∑

j 6=i ∆j σ̂xj

} . (A3)

This equation can then be estimated as a logit model. Standard errors need to be recov-
ered by bootstrap or with a two-step correction. As opposed to the Maximum Likelihood
method, this method does not require discretization of the covariates.

Comparison of Results - In Table A1 we report estimation results for both methods. The
estimates are qualitatively similar, although (bootstrap) standard errors are systematically
smaller for the Maximum Likelihood method, reflecting its greater efficiency.

D Further Computational Details: Policy Experiment

D.1 Computation of Predictions for the model with Weak Assumptions
on Information: the Variable Latent Information Approach

All of the predicted objects described in Section 7.1 - IxW , IW and IxW

(
θ̂0
)
- can be

easily obtained from the computation of

W (θ, x) = max
ν∈BCEx(θ)

W (ν, θ, x) (PC0)

W (θ, x) = − max
ν∈BCEx(θ)

−W (ν, θ, x) ,
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Table A1: Perfectly Private Information Estimation - Two Methods

Parameter PP Info PP Info
ML - Su (2014) Two Step - Bajari et al. (2010)

Constant −3.32 −2.89
[−3.51,−3.16] [−3.30,−2.49]

Market Size 3.06 2.62
[2.59, 3.94] [1.63, 3.62]

Home-region:
Cooperatives 1.60 1.95

[1.36, 1.81] [1.48, 2.42]
Italian Groups 1.72 1.60

[1.54, 1.99] [1.03, 2.18]
French Groups 1.32 1.66

[1.10, 1.58] [1.13, 2.19]
Presence of Large Malls:

Cooperatives −1.61 −0.96
[−2.03,−1.19] [−1.93, 0.011]

Italian Groups -1.04 -0.50
[−1.46,−0.42] [−1.54, 0.53]

French Groups -0.80 -0.28
[−1.30,−0.46] [−1.15, 0.59]

Competitive Effects:
Cooperatives 0.02 −0.069

[−0.55, 0.47] [−1.22, 1.08]
Italian Groups −0.66 −1.57

[−1.08,−0.29] [−2.62,−0.52]
French Groups 2.88 2.93

[1.73, 3.51] [0.69, 5.17]

Note: We report estimates for the game-theoretic model of Section 6 in the article, obtained using the two
methods for the estimation of perfectly private information games described in this appendix. Bootstrap
standard errors are in parenthesis, and are calculated from 200 bootstrap samples.

for all values of θ ∈ Cn, where W is a function such as WŶ (ν, θ, x) or WN (ν, θ, x) which is
linear in ν. For simplicity, we focus on the computation of W (θ, x) since W (θ, x) can be
obtained with minimal changes.

With the same discretization applied in Appendix A, the program (PC0) can be ap-
proximated by the feasible program:

max
ν∈R|Y |×r

W (ν, θ, x) (PC1)

s.t.
∑
y,ε ν (y, ε)− 1 = 0

∀ε ∈ Er
∑
y ν (y, ε)− f r (ε; θε) = 0

∀i, yi, y′i, εi
∑
y−i

∑
ε−i ν (y, εi, ε−i) (πi (y′i, y−i, εi;x, θ)− πi (y, εi;x, θ)) ≤ 0.

This is a linear program which can be solved with standard solvers; we compute it using
the solver KNITRO in AMPL. Alternative solvers (e.g., CPLEX) gave us similar results.
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D.2 Computation of Predictions for the model with Weak Assumptions
on Information: the Fixed Latent Information Approach

We first introduce the notion of the BCE for the linked game, encompassing both the
factual game with covariates x, and the predicted game with covariates x′:

Definition 5. (BCE of the Linked Game) A Bayes Correlated Equilibrium ν̃ ∈ PY,Y,E,T̃
for the linked game Γx,x′ (θ, S) is a probability measure ν̃ over factual and counterfactual
actions profiles, payoff types, and signals that is:

1. Consistent with the prior : for all ε ∈ E , τ̃ ∈ T̃ ,

∑
y,y′∈Y

∫
[t≤τ̃ ]

∫
[e≤ε]

ν̃
(
y, y′, e, t

)
dtde =

∫
[t≤τ̃ ]

∫
[e≤ε]

Pτ̃ |e(t)dF (e; θε) dt;

2. Incentive Compatible: for all i, εi, τ̃i, yi, y′i such that ν̃ (yi | εi, τ̃i, y′i) > 0,

Eν̃ [πi (yi, y−i, εi;x, θπ) | yi, εi, τ̃i] ≥ Eν̃ [πi (ỹi, y−i, εi;x, θπ) | yi, εi, τ̃i] , ∀ỹi ∈ Yi,

and for all i, εi, τ̃i, yi, y′i such that ν̃ (y′i | εi, τ̃i, yi) > 0,

Eν̃
[
πi
(
y′i, y

′
−i, εi;x′, θπ

)
| y′i, εi, τ̃i

]
≥ Eν̃

[
πi
(
ỹi, y

′
−i, εi;x′, θπ

)
| y′i, εi, τ̃i

]
, ∀ỹi ∈ Yi,

where the expectation operators Eν̃ [· | yi, εi, τ̃i] are taken with respect to the condi-
tional equilibrium distributions ν̃ (y−i, ε−i, τ̃−i | yi, y′i, εi, τ̃i) and ν̃

(
y′−i, ε−i, τ̃−i | yi, y′i, εi, τ̃i

)
,

respectively in the two inequalities.

3. Consistent with factual outcomes: equilibrium behavior in the factual game must be
consistent with factual outcomes, so that

∑
y′

∫
T̃

∫
E
ν̃
(
y, y′, e, t

)
dtde = Py|x (y) , ∀y ∈ Y.

This definition is closely related to the one in Bergemann, Brooks, and Morris (2022). Let
˜BCEx,x′ (θ) be the set of all BCEs of the linked game Γx,x′ (θ, S). The choice of the perfectly

private information structure S corresponds to our choice of baseline information structure
in the paper, and allows us to omit the presence of additional signals τ̃i.

Our use of fixed latent information predictions is based on the following lemma, which
restates and adapts Theorem 1 in Bergemann et al. (2022).

Lemma 2. (Bergemann et al., 2022) Suppose that observed play in the factual game is
Py|x ∈ QBNE

θ0,S0
(x) , and play in the counterfactual game is q′ ∈ QBNE

θ0,S0
(x′) . Suppose the re-
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searcher only assumes that S0 ∈ S, but has identified θ0. Then, we can characterize all
counterfactual outcomes q′ consistent with this setup as those for which there exists a BCE
of the linked game ν̃ ∈ ˜BCEx,x′ (θ0) such that (i) the marginal of ν̃ on the space of factual
actions is Py|x, and (ii) the marginal of ν̃ on the space of counterfactual actions is q′.

The lemma establishes that BCEs of the linked game enable a tractable characterization
of predicted or counterfactual outcomes generated by BNE play under fixed latent infor-
mation. The perspective adopted in the Lemma is consistent with the rest of our article,
since the researcher does not know the true information structure that generated the data
and only maintains weak assumptions on information in the sense that S0 ∈ S. Different
Bayes Nash equilibria and equilibrium selection mechanisms may be generating the data in
the factual and counterfactual games.

Although we state the lemma for a known θ0, in our application we only know that
θ ∈ Cn, so that we have to account for the extra uncertainty due to set identification and
estimation of the game’s structure. To compute predicted objects Ĩpost

W̃
, ĨW and Ĩpost

W̃

(
θ̂0
)

and implement the fixed latent information approach we need to compute

W̃ (θ) = max
ν̃∈ ˜BCEx,x′ (θ)

W̃
(
ν̃, θ, x, x′

)
, (PC2)

where the function W̃ adapts the corresponding W in a natural way, that is:

max
ν̃∈R|Y |×|Y |×r

W̃ (ν̃, θ, x, x′) (PC3)

s.t.
∑
y,y′,ε ν̃ (y, y′, ε)− 1 = 0

∀y ∈ Y Py|x (y)−∑ε,y′∈Y ν̃ (y, y′, ε) = 0

∀ε ∈ Er
∑
y,y′ ν̃ (y, y′, ε)− f r (ε; θε) = 0

∀i, yi, y′i, ỹi, εi
∑
y−i,y′−i

∑
ε−i ν̃ (y, y′, εi, ε−i) (πi (ỹi, y−i, εi;x, θ)− πi (y, εi;x, θ)) ≤ 0

∀i, yi, y′i, ỹi, εi
∑
y−i,y′−i

∑
ε−i ν̃ (y, y′, εi, ε−i)

(
πi
(
ỹi, y

′
−i, εi;x′, θ

)
− πi (y′, εi;x′, θ)

)
≤ 0.

To compute predictions we need thus to operationalize (PC3), which we do with the usual
discretization of E .

There is another consideration when implementing this method. At the identification
level, if θ ∈ ΘBCE

I there exists a latent information structure such that BCE predictions
can match Py|x. However, the inferential procedure that we employ implies only that for
θ ∈ Cn BCE predictions need to match Py|x approximately. In fact, θ ∈ Cn only implies
that θ is close to the minimizer of the empirical criterion function Gn built using a finite
sample {xi, yi}∞i=1.

Moreover, a feasible implementation of our empirical strategy involves several approx-
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imations: we estimate the set Cn by relying on a discretized set of covariates X, and we
discretize the support of E in order to compute ν. Hence, finite-sample and computational
error may make the restriction margν̃ (y) = Py|x for some parameters θ ∈ Cn impossible
to satisfy exactly, thus rendering (PC3) unfeasible. To address this problem, we compute
P̃y|x (θ) , the distribution of the observables that best fits the data for a given parameter θ.
More formally, P̃y|x (θ) is equal to q that solves the program:

max
b∈B

min
q∈QBCE

θ
(x)

[
bTPy|x − bT q

]
.

Intuitively, P̃y|x (θ) is the distribution of the observables corresponding to the BCE that best
fits the data Py|x and the parameter value θ. In our experience, these P̃y|x (θ) are reasonably
close to the data for parameters θ in the confidence set. We can thus compute the predicted
quantity of interest W̃ (θ) as the solution to the program:

max
ν̃∈R|Y |×|Y |×r

W̃ (ν̃, θ, x, x′) (PC4)

s.t.
∑
y,y′,ε ν̃ (y, y′, ε)− 1 = 0

∀ε ∈ Er
∑
y,y′ ν̃ (y, y′, ε)− f r (ε; θε) = 0

∀y ∈ Y |P̃y|x (y; θ)−∑ε,y′∈Y ν̃ (y, y′, ε) | ≤ ε

∀i, yi, y′i, ỹi, εi
∑
y−i,y′−i

∑
ε−i ν̃ (y, y′, εi, ε−i) (πi (ỹi, y−i, εi;x, θ)− πi (y, εi;x, θ)) ≤ 0

∀i, yi, y′i, ỹi, εi
∑
y−i,y′−i

∑
ε−i ν̃ (y, y′, εi, ε−i)

(
πi
(
ỹi, y

′
−i, εi;x′, θ

)
− πi (y′, εi;x′, θ)

)
≤ 0.

Notice that the constraint of consistency with the (pseudo-) factual outcomes is enforced
with some slack, to maintain feasibility in light of the multiple approximations involved in
the program. We set ε = 0.001 in our computation; experimenting with tighter and looser
tolerances did not alter the results substantially.

D.3 Computation of Predictions for Models with more Restrictive As-
sumptions on Information

Complete Information - Under the assumption of complete information and Nash equi-
librium in pure strategies, the lower and upper bound probabilities of market structure
outcomes have analytical expressions for our three-player entry game (Tamer, 2003; Cilib-
erto and Tamer, 2009). We obtain in this wayWS (θ, x) andWS (θ, x), and we can compute
from these the complete information intervals in the bottom part of Figure 3 and the results
in column III of Table 3 in the article.

Perfectly Private Information - Market structure outcomes Ŷ can be expressed as func-
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tions of a vector of strategy profiles σ as WS

Ŷ
(σ). For instance, the probability that there

are no entrants is
W

S
{(0,0,0)} (σ) = Πi∈I (1− σi) .

Hence, upper bound probabilities for a market structure outcome under the perfectly private
information model can be obtained as

W
S

Ŷ
(x) = arg max

σ
W

S

Ŷ
(σ)

s.t. σ = Φ
(
σ;x, θ̂Sπ

)
,

where θ̂Sπ is the parameter estimate obtained under the assumption of perfectly private
information (see C.6 above) and Φ represents the equilibrium mapping in Equation (A3).
The average changes in upper bounds probabilities for the perfectly private information
model reported in column IV of Table 3 are computed from W

S

Ŷ
(x) . Confidence intervals

for the prediction are based on 200 bootstrap samples, and account for uncertainty in θ̂Sπ .

E BMM Representation of the Identified Set

Beresteanu, Molchanov, and Molinari (2011), henceforth BMM, provide a computable
characterization of the identified set of partially identified models making use of random
set theory. In this appendix, we show how our characterization of the identified set maps
into their framework.

Let z = (x, y) and ε be respectively the vector of observable outcomes and covariates,
and the vector of payoff types. The random vectors are defined on a probability space
(Ω,F , P ) , and let G be the sigma algebra generated by the random vector x. We also adopt
the assumptions 3.1(i),(iii) and 3.2 in BMM, and substitute 3.1(ii) with the assumption of
BCE behavior. We restate these assumptions below for ease of reference:

Assumption 4. Assume that:

1. The discrete set of strategy profiles of the game, Y, is finite.

2. Payoffs πi (y, εi;x, θπ) have a known parametric form, and are continuous in x and
εj .

3. The observed outcome y of the game is the result of BCE behavior in the game of
perfectly private information S.

4. The conditional distribution of outcomes Py|x is identified by the data, and ε has a
continuous distribution function.
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Let us adapt our notation and denote the set of BCE equilibrium distributions ν
with BCEθ (x), for any given realization of x. Considering x (ω) as a random vector,
BCEθ (x(ω)) = BCEθ (ω) is a random set. Let Sel(BCEθ) denote the set of all ν (ω), mea-
surable selections of BCEθ (ω). In order to characterize the identified set, we need to map
these equilibria into observable outcomes of the game for each ω ∈ Ω. A realization of ω
implies both a realization of (x (ω) , ε (ω)) , and also a BCE distribution ν (ω) , which in
turn determine the following probability distribution over outcomes:

q(ν (ω)) = ν (· | ε (ω)) ∈ PY ,

where ν (·|ε (ω)) is the conditional distribution implied by the joint distribution ν (ω) ∈ PY,E ,
and the realization ε (ω). Q̃θ is the set of all equilibrium predictions:

Q̃θ = {q (ν) : ν ∈ Sel (BCEθ)} .

Then the conditional Aumann expectation of this random set is:

E
(
Q̃θ | x

)
= {E (q (ν) | x) : ν ∈ Sel (BCEθ)} .

Notice however that:

E (q (ν) | x) = E [ν (· | ε (ω)) | x]

=
∫
E
ν (y | ε) dF

=
∫
E
ν (y,dε) ,

so that E
(
Q̃θ|x

)
= QBCEθ (x) . Hence, our characterization of the identified set is equivalent

to the one proposed in BMM.

F A More General Model

The model in Section 2 of the paper embeds an important restriction: our definition
of the class of information structures S maintains the assumption that players know the
realization of market-level covariates x and of their own payoff type εi. This restriction in
turn is important for the definition of ΘBNE

I (S) and the equivalence result in Proposition
1. In this appendix we discuss identification under more general assumptions.

As in the article, we assume that players receive signals with two components, but now
τxi = (τ∗xi , τ̃xi ). The first component of τxi is a private random signal τ∗xi that is part of
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their baseline information structure S∗ defined as:

S∗x =
(
T ∗x,

{
P xτ∗|ε : ε ∈ E

})
.

This definition of baseline information structure allows for both non-informative signals
and perfectly informative signals on ε. The model in Section 2 specifies this baseline to be
τ∗xi = εi; we consider here cases where the baseline could be either more or less informative.

In addition to the baseline signal, every player receives an extra private random signal
τ̃xi , which may also be informative about the full vector of baseline types τ∗ and the full
vector of ε. An information structure S̃x specifies, for a game with covariates x, the set of
extra signals a player may receive and the probability of receiving them, given the realization
of the vector of payoff types and baseline signals. Formally:

S̃x =
(
T̃ x,

{
P̃ xτ̃ |τ∗,ε, : (τ∗, ε) ∈ T ∗x × E

})
,

Whereas S∗ describes the baseline information, the information structure S̃ denotes the
extra information players might receive. We use S(S∗) to denote the class of information
structures that are compatible with the baseline information structure S∗,2 so that a generic
S ∈ S(S∗) is the information structure where players receive signals τxi = (τ∗xi , τ̃xi ) for a
fixed baseline S∗ and some generic S̃. The game Γx(θ, S) for S ∈ S(S∗) is then analogous to
the game as defined in the article, except that players now observe baseline signals according
to S∗ and extra signals according to S̃.

We also redefine the BNE concept used in the paper:

Definition 6. (Bayes Nash Equilibrium) A strategy profile σ = ×i∈Nσi, σi : T ∗xi × T̃ xi →
PYi is a Bayes Nash Equilibrium (BNE) of the game Γx(θ, S) if for every i ∈ N, τ∗i ∈ T ∗xi
and τ̃i ∈ T̃ xi we have that, for every yi ∈ Yi such that σi (yi | τ∗i , τ̃i) > 0:

Eσ [πi (yi, y−i, εi;x, θπ) |τ∗i , τ̃i] ≥ Eσ
[
πi
(
y′i, y−i, εi;x, θπ

)
|τ∗i , τ̃i

]
, ∀ y′i ∈ Yi.

Based on this modified notion of BNE, which defines equilibrium strategies as functions
of both baseline signals τ∗ and extra signals τ̃ , it’s immediate to redefine the set of BNE
predictions QBNE

θ,S (x) for the game Γx(θ, S) and the BNE identified set ΘBNE
I (S(S∗)) .

Our main result relies on the following Lemma, a re-statement of Lemma 1 in the article:

Lemma 3. For all θ ∈ Θ and x ∈ X,

1. If q ∈ QBCE
θ,S∗ (x) , then q ∈ QBNE

θ,S (x) for some S ∈ S(S∗).

2In the language of Bergemann and Morris (2016), S(S∗) contains all expansions of S∗.
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2. Conversely, for all S ∈ S(S∗), QBNE
θ,S (x) ⊆ QBCE

θ,S∗ (x) .

We may now extend our Proposition 1 to this environment:

Proposition 4. (Robust identification) Let Assumptions 1 and 2, aptly modified for the
game Γx(θ, S), hold. Then

ΘBCE
I (S∗) = ΘBNE

I (S(S∗)) .

For S∗ = S, this Proposition coincides with our Proposition 1 in Section 3 of the article.
However, the explicit reference to the baseline information structure allows us to generalize
the result to environments where players do not observe their own εi, or observe not only
εi but also other components of the vector of payoff types ε.

It is interesting to investigate how identified sets vary for different assumptions on S̃.
The set ΘBCE

I (S(S∗)) is certainly not invariant to S∗; intuitively, as information structures
get more informative, the set of BCE predictions gets smaller, and hence fewer parameters
are compatible with the observables, so that the identified set shrinks. This notion of “more
informative” can be made precise (as in Bergemann and Morris, 2016).

Having established that ΘBCE
I (S∗) is not invariant to S∗, we still maintain that using

S∗ = S best suits the goal of the paper. Baseline information structures S∗ that are less
informative than S are likely to result in limited identifying power, whereas baselines that
are more informative than S∗ may not be justified in applications.

Computational Burden: The change in baseline affects computation of the functions G
and Gn that define identified set and confidence set of parameters. With respect to the
steps described in Appendix A, a baseline S∗ 6= S changes the number of inequalities in
the program (P0). In fact, now each player i has an incentive constraint for all values of
(yi, y′i, εi, τ∗i ) . This implies that - if the space of signals for player i has dimension |T ∗xi | = si

- the number of inequalities is now dineq,S∗ = ∑
i∈N (|Yi| · |Yi − 1| · ri · si) as opposed

to the original dineq = ∑
i∈N (|Yi| · |Yi − 1| · ri) for the perfectly private baseline. This

results in a corresponding increase in the number of variables for the computable program
(P3). In practice, simple increases in the baseline information structure remain feasible
computationally. For example, for the game of Figure 3, Panel C in the article going
from a perfectly private baseline to the flexible information baseline SF where the public
type ηi has a discrete support taking two different values generates a number of inequalities
dineq,S∗ = 2·dineq, thus resulting in an increase of 400 variables in the maximization problem
to compute G (θ) when the continuously distributed private type εi is discretized with a
support taking 50 different values.
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G Identification of Correlation among Payoff Types

In this subsection we further investigate the identifying power of BCE with respect to θε.
The characterization of the sharp identified set ΘBCE

I in Section 4.2 of the article uses an in-
finite number of moment inequalities to set identify θε so that the resulting mapping between
data and parameters is not transparent. To gain intuition on how the parameter θε is identi-
fied, we assume that θπ is point identified and we construct non-sharp bounds using a simple
implication of equilibrium behavior. In any BCE distribution dominated actions must occur
with zero probability, since otherwise incentive compatibility constraints would be violated.

For each value of θε and x this observation implies thus a lower bound LBy (θε;x) on
the probability of observing any outcome y ∈ Y , constructed as the integral of the cdf of ε
over the region of E where y is a dominant outcome (i.e. yi is dominant for every player i).
Similarly we construct an upper bound UBy (θε;x) for the probability of each outcome y
by integrating over all areas of E where y is a non dominated outcome, that is for all players
i no other y′i 6= yi is dominant. We can then construct bounds for θε. For each outcome
y ∈ Y we define a set BD (y, x) which includes values of θε such that Py|x falls within the
bounds LBy (θε;x) and UBy (θε;x). Finally, the sets BD (y) = ∩x∈XBD (y, x) summarize
the identification power of the bounds constructed using outcome y. Variation in x shrinks
the sets BD (y). The construction of the bounds outlined above is described more formally
in Proposition 3 in Appendix B for a two-player entry game with point identified θπ.

In Figure A1 we show the bounds on outcome probabilities LB and UB, and the sets
BD of parameters θε compatible with these bounds for a two-player entry game with point
identified payoffs. For this figure we assume that payoff types are jointly normal so that we
can focus on the identification of the parameter θε = ρ that represents the correlation of
players’ payoff types. Panel A depicts bounds on outcome probabilities when all covariates
are zero. Although the bounds are wide, encompassing a range of realizations of Py|x, they
are non-trivial. As the correlation in ρ increases, players are more likely to choose the same
action: bounds on the probabilities of outcomes (0, 0) and (1, 1) increase with ρ, whereas
bounds on outcomes (0, 1) and (1, 0) decrease with ρ.

Panel B depicts sets ∩y∈YBD (y, x) of parameters ρ that generate bounds compatible
with the data for a given value of x. To understand what variation in covariates is most
helpful in identifying ρ we plot these sets as vertical segments for different values of x. In
this example, where the upper bound of BD is sharp,3 values of covariates that generate
the largest dispersion in payoffs across players are the most informative about the lower

3This is a because in the DGP we chose (complete information, S0 = S) the probability of observing firms doing
the same action (hence, selecting either (0, 0) or (1, 1)) is the lowest across all possible S0: every other information
structure implies a higher probability of observing (1, 1) or (0, 0) for any given ρ. In turn, this means that there is
no level of correlation in unobservables ρ > ρ0 that is compatible with the data, since for such ρ the value of LBy for
y ∈ {(0, 0) , (1, 1)} would exceed the corresponding Py|x.
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Figure A1: Identification of Correlation among Payoff Types

(A) LB,UB for X = {[0, 0, 0]} (B) BD (y, x) for different values of x

0

(C) BD (y) for X = {[0, 0, 0]}
0

(D) BD (y) for X = X
′′

Note: We represent bounds on probabilities of outcomes LBy and UBy (Panel A) and bounds BD (y) on the
parameter ρ (Panels B-D) for the two-player game with payoffs πi (y, εi;x, θπ) = yi

(
xTc β

C + xTi β
E
i + ∆−iy−i + εi

)
for i = 1, 2. Payoff types are distributed ε ∼ N (0,Σ) , Σ =

(
1 ρ
ρ 1

)
, and payoff parameters θπ are the same as

those in Table 2 in the article. The vector x takes values in {[0, 0, 0]} for Panels A and C, and in X′′ in Panel D. See
Section 5.1 in the article for the definition of X′′

. Values of x are indicated on the horizontal axis in Panel B.

bound of BD. This is because if the observed level of correlation in actions is high even if
the deterministic part of players’ payoffs is very different, then the value of correlation in
payoff types cannot be too low. Symmetrically, values of covariates that generate identical
payoffs are most informative about the upper bound on the correlation parameter ρ.

Panel C shows bounds on parameters implied by the inequalities LB and UB for different
values of correlation ρ0 in the data generating process. The upper bound on ρ in ∩y∈YBD (y)
is sharp (it coincides with ρ0), but only the moment P(1,1) generates a non-trivial lower
bound for most values of ρ0. This is not surprising: if we observe a certain frequency of
duopolies, it must be the case that correlation in payoff types is not too low. Panel D
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exemplifies how the bounds on parameters implied by the inequalities shrink as the amount
of variation in x increases. As x takes values on a wider support, the moments P(0,1) and
P(1,0) start being informative on the lower bound for ρ, and the set of values compatible
with the inequalities becomes reasonably small.

We remark that the set ∩yBD (y) need not be a subset of the projection of ΘBCE
I onto

the direction of ρ: to obtain ∩yBD (y) we have assumed a point identified θπ and we only
use part of the information contained in the model, whereas ΘBCE

I considers joint sharp
identification of the full vector of parameters. However, the figure provides reassurance that
the structure of the model - together with moments of the joint distribution of outcomes
- have significant identifying power with respect to the parameter θε that summarizes the
distribution of payoff types.

H Additional Tables and Figures

We report in Table A2, Panel A summary statistics for the data used in our applica-
tion. In Panel B we report coefficient estimates for linear regressions and ordered probit
regressions of market structure outcomes on market-level covariates. See Section 6.1 in the
article for more discussion.
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Table A2: Descriptive Statistics and Regressions

Panel (A): Demographics of Local Grocery Markets
Variable Mean Std Dev. Median Max Min
Large Mall in Market 0.130 0.337 0 1 0
421 Markets with no Large Malls:
Population 44, 629.22 40, 341.88 31, 730 297, 510 3, 276
Surface, in km2 329.90 242.72 275.72 1, 969.64 25.19
Tax Income Per Capita, in EUR 13, 223.8 1, 730.34 13, 204.92 18, 288.90 8, 020.68
# of Supermarkets 1.46 1.95 1 16 0
# of Players in Market 0.85 0.93 1 3 0
63 Markets with Large Malls:
Population 117, 614.10 56, 195.42 103, 925 249, 852 35, 768
Surface, in km2 447.84 377.92 359.95 2, 243.54 95.33
Tax Income Per Capita, in EUR 14, 411.47 1, 650.48 14, 475.88 18, 627.36 10, 333.89
# of Supermarkets 3.77 2.89 3 13 0
# of Players in Market 1.58 0.87 2 3 0

Panel (B): Regressions of Market Structure on Presence of Large Malls
Model Linear Regression Ordered probit Linear Regression Ordered probit
Variable # of Supermarkets # of Players in Market

(I) (II) (III) (IV)
Large Mall in Market −0.437 −0.222 −0.150 −0.242

(0.278) (0.165) (0.145) (0.175)
Market Size 3.764 2.658 1.213 1.766

(0.236) (0.158) (0.109) (0.143)
Constant 0.167 0.022

(0.378) (0.230)
N 484 484 484 484
R2 0.677 0.255 0.434 0.225

Note: Panel A reports market-level descriptive statistics for the 484 markets used for the application in Section
6 of the article. Panel B reports coefficient estimates and standard errors (in parenthesis) from linear regressions
(columns I and III) and ordered probit models (columns II and IV). The dependent variable is the number of
supermarkets of at least 1500 m2 in column I and II, or the number of supermarket players in column III and IV.
Market size is the product of population and log of tax income per capita. All regressions include fixed effects
for 13 administrative regions. Values of R2 refer to McFadden’s pseudo-R2 for the ordered probit regressions.

Figure A2 represents intervals IxW for the expected number of entrant, considering both
a variable and a fixed latent information approach
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Figure A2: Expected Number of Entrants

(A) Variable Latent Information (B) Fixed Latent Information

Note: We represent predicted intervals IxW (on the left) and Ĩx,x
′

W̃
(on the right) for the expected number of entrants.

The interval IxW is computed with variable latent information, while Ĩx,x
′

W̃
is computed with fixed latent information.

Each figure represents intervals IxW and Ĩx,x
′

W̃
as solid line segments for xpost and as dashed lines for xpre. Segments

for different markets and average values are stacked vertically.

Figure A3 includes market-by-market details for Figure 4 of the main text.
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Figure A3: Probabilities of Market Structure Outcomes With and Without Malls

(A) Average Interval Ix
W for the Probability of No

Entrants
(B) Average Interval Ix

W for the Probability of At
Least Two Entrants

(C) Weak Assumpt. on Information (D) Weak Assumpt. on Information

(E) Complete Information (F) Complete Information

Note: The figure reproduces Panels A and B of Figure 4 in the article, and adds a market-by-market breakdown of
the intervals IxW under two different assumptions on information. The green lines depict intervals obtained for the
model with weak assumptions on information; the red lines at refer to the model with complete information. Intervals
are represented as solid line segments for xpost and as dashed lines for xpre. Figures A, C and E represent intervals
for the outcome: “No entrants”; figures B, D and F represent intervals for the outcome: “At least two entrants.”

Tables A3 and A4 include a detailed breakdown across markets and across values of
covariates xpre and xpost of the results summarized in Table 4 in the article.
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Table A3: Relative Size of IxW and IxW (θ̂0)

Variable latent info ratio Fixed latent info ratio
No Entrants Two+ Entrants No Entrants Two+ Entrants

Average 0.74 0.71 0.68 0.58
Mkt. 1 0.67 0.68 0.65 0.62
Mkt. 2 0.80 0.67 0.75 0.52
Mkt. 3 0.78 0.76 0.74 0.53
Mkt. 4 0.78 0.70 0.71 0.60
Mkt. 5 0.79 0.76 0.67 0.65
Mkt. 6 0.73 0.69 0.71 0.64
Mkt. 7 0.81 0.68 0.82 0.50
Mkt. 8 0.56 0.74 0.37 0.55

Note: We report ratios |IpostW (θ̂0)|/|IpostW | and |Ĩpost
W̃

(θ̂0)|/|Ĩpost
W̃
| for two outcomes of interest: observing no

entrants, and observing at least two entrants. Intervals IpostW (θ̂0) and Ĩpost
W̃

(θ̂0) are computed for the value θ̂0
which minimizes the empirical criterion function.

Table A4: Relative Size of Variable and Fixed Latent Information Intervals

Fixed to Variable latent info ratio |Ĩpost
W̃

(θ̂0)|/|IpostW (θ̂0)|
No Entrants Two+ Entrants Coop Entry Ita Entry N of entrants

Average 0.88 0.78 0.91 0.54 0.82
Mkt. 1 0.96 0.86 0.98 0.72 0.91
Mkt. 2 0.88 0.75 0.86 0.47 0.82
Mkt. 3 0.93 0.66 0.96 0.52 0.70
Mkt. 4 0.92 0.84 0.98 0.54 0.70
Mkt. 5 0.77 0.79 0.92 0.48 0.83
Mkt. 6 0.95 0.91 0.96 0.77 0.88
Mkt. 7 0.98 0.73 0.92 0.38 0.86
Mkt. 8 0.61 0.73 0.70 0.46 0.69

Note: We report ratios of intervals |Ĩx,x
′

W̃
(θ̂0)|/|IxW (θ̂0)| for each market and on average. All intervals are

computed for the value θ̂0 which minimizes the empirical criterion function.
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