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Abstract

In a differentiated products setting when costs are unobserved, the Cournot model of
quantity-setting competition attributes a greater share of prices to markups than does
the Bertrand-Nash model of price-setting, leading to lower estimates of marginal costs.

JEL classification: L1, Keywords: Cournot competition, Bertrand competition, markups

1 Introduction

The classic price-setting model of Bertrand and quantity-setting model of Cournot are the
first models of oligopolistic competition every student learns. In the simplest case of ho-
mogenous goods and symmetric and constant marginal costs, the former makes the stark
prediction of zero markups, while the latter allows for positive markups and firm profits.
The Bertrand-Nash model of price setting in differentiated products markets is the basis
of an enormous amount of empirical work in industrial organization; the quantity-setting
model is also well-defined in such settings, and while less popular, is also considered empiri-
cally. We show that in a general differentiated products environment where all products are
gross substitutes and there are no Giffen goods, the Cournot model infers higher markups
from the same observables, attributing a smaller fraction of prices to marginal costs. Our
result implies that in structural empirical settings, researchers choosing to model conduct
as a Cournot game rather than a Bertrand game will mechanically measure a higher level of
markups.
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2 Model and Result

2.1 Environment

Let N = {1, 2, . . . , N} be the set of products and F a partition of N the set of firms, so that
f ∈ F refers both to the identity of a firm and to the set of products it sells. Let p1, . . . , pN
denote prices and s1, . . . , sN market shares. Normalize market size to 1, so demand and
market share for a product are identical. Suppose the demand system s(p) is known.

Assumption 1. The demand system s(·) is differentiable with respect to prices, and for
each product i ∈ N, (i) ∂si

∂pi
< 0, (ii) ∂sj

∂pi
> 0 for each j 6= i, and (iii) ∂

∂pi

∑
j∈N sj < 0.

That is, in addition to differentiability, we assume that there are no Giffen goods, goods
are gross substitutes, and the outside good is a gross substitute for any of the other goods.
All of these conditions occur naturally in any discrete choice setting where consumers choose
whichever single product (or the outside option) maximizes their utility, given a utility from
each product that is decreasing in that product’s price (and independent of other products’
prices). In particular, Assumption 1 holds in all the standard demand systems used in
empirical industrial organization, including that of Berry, Levinsohn, and Pakes (1995).
Outside of discrete choice settings, these are of course substantive assumptions, particularly
the requirement that no two goods are complements.1

Assumption 2. Marginal costs are constant for each product (but need not be equal across
products).

Let cj denote the marginal cost of good j. Let p, c, and s be vectors of all products’
prices, marginal costs, and market shares, respectively. Let Sp be the Jacobian of the demand
system with respect to prices, [Sp]i,j = ∂si

∂pj
. Under Assumption 1, Sp is invertible, so s(·) is

invertible as well.

2.2 Bertrand-Nash (Price-Setting) Competition

In the Bertrand-Nash model, each firm f sets prices for all its products to solve

max
{pj}j∈f

∑
j∈f

(pj − cj)sj(p)

1Product substitutability is also key to establishing the ranking of equilibrium prices between the Cournot
and Bertrand models given a fixed level of marginal costs. Okuguchi (1987) and Amir and Jin (2001) show
that Cournot prices may be lower than Bertrand prices when some products are complements.
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taking as given the prices of products i /∈ f . The firms’ first-order conditions with respect
to each price can be stacked in matrix form and written as

p− c = −
(
Ω� S ′p

)−1
s

where Ω the ownership matrix (defined by Ωi,j = 1 if i and j are products sold by the
same firm and 0 otherwise) and � refers to element-by-element multiplication of matrices
([A � B]i,j = Ai,jBi,j). Thus, under the assumption that firms are playing the equilibrium
of the Bertrand game, markups can be recovered from the observed market shares, price
elasticities at equilibrium prices, and the ownership matrix; if prices are also observed,
marginal costs can be recovered as prices minus markups.

2.3 Cournot (Quantity-Setting) Competition

In the Cournot model, each firm f instead chooses quantity levels sj for each of its products,
taking as fixed the quantity levels of competing products, solving

max
{sj}j∈f

∑
j∈f

(pj(s)− cj)sj

where pj(s) = s−1j (s) is the price of product j given the market shares chosen by all firms.
Since

[
∂s
−1

∂s

]
= S−1p , the first-order conditions can be stacked and written as

p− c = −
(

Ω�
(
S−1p

)′)
s

so once again markups and marginal costs can be recovered under the assumption firms are
playing the equilibrium of the Cournot game.

2.4 Result

Rather than fixing primitives and considering the different equilibrium outcomes of the two
models, our thought experiment is the reverse: a researcher knows the demand system and
observes market outcomes but not costs, and infers markups and costs from the equilibrium
implications of one of the two models. Our result is the following:

Theorem 1. Fixing the demand system and observable outcomes (prices and market shares),
the Cournot model implies higher markups and therefore lower marginal costs than the
Bertrand model.
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For a simple example to better visualize the result, suppose there are four products, two
firms f1 = {1, 2} and f2 = {3, 4} selling two products each, and that ∂si

∂pj
= −0.45 if j = i

and 0.05 otherwise.2 In that case, the Bertrand model implies markups are

p− c = −


−0.45 0.05 0 0

0.05 −0.45 0 0

0 0 −0.45 0.05

0 0 0.05 −0.45


−1

s =


2.25 0.25 0 0

0.25 2.25 0 0

0 0 2.25 0.25

0 0 0.25 2.25

 s

while the Cournot model implies markups of

p− c = −




1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1

� [S ′p]
−1

 s ≈


2.33 0.33 0 0

0.33 2.33 0 0

0 0 2.33 0.33

0 0 0.33 2.33

 s

Thus, for any vector of market shares, the Cournot markups are higher. The theorem shows
the result holds generally, for the same reason. If we (without loss of generality) relabel
products so that each firm sells products with consecutive indices, so that Ω, −(Ω� S ′p)

−1,
and−(Ω�(S−1p )′) are all block-diagonal matrices, we establish that the within-block elements
of the latter two matrices are all strictly positive, with the elements of −(Ω � (S−1p )′) each
being strictly larger. Since s > 0, this implies larger markups under the Cournot model.

3 Discussion

A number of papers consider the reverse of our question: for a given set of primitives (de-
mand system and marginal costs), how do equilibrium outcomes compare across the two
models? Vives (1985) studies a demand system very similar to ours, derived from a repre-
sentative consumer with quasilinear preferences but with single-product firms and symmetric
cross-price effects ∂si

∂pj
=

∂sj
∂pi

> 0. Under additional assumptions that guarantee either (i)
symmetric demand and uniqueness of equilibrium under both models, or (ii) quasi-concave
profit functions and Bertrand reaction functions that are increasing in rival prices, he shows
that the Cournot model gives higher equilibrium prices than the Bertrand model.3 Related

2These arise with simple logit demand si =
exp(vi−αpi)

1+
∑4

j=1 exp(vj−αpj)
if s1 = s2 = s3 = s4 = 0.10 and α = 5.

3Formally, in the latter case, the result is that for any equilibrium of the Cournot model, there is an
equilibrium of the Bertrand model with lower prices.
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results appear in Hathaway and Rickard (1979), Singh and Vives (1984), Cheng (1985), and
Okuguchi (1987). Because our result concerns markups and costs implied by each model
given equilibrium outcomes, rather than predictions on equilibrium outcomes given primi-
tives, we can avoid imposing additional assumptions to ensure equilibrium uniqueness, a key
aspect of the previous literature.

Note also that our result does not depend on constant marginal costs; if the total cost
Cj(sj) of producing each product j depended nonlinearly on the quantity produced, the first-
order conditions would be identical, with C ′j(sj) replacing cj. The Cournot model would infer
greater markups (lower marginal costs) for each product at the observed demand level. If
firms had economies of scope, however – the marginal cost of product j depending on the
quantity produced of the firm’s other products – the first-order conditions would change and
our result need not hold.
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Appendix – Proof

The Bertrand-Nash model gives first-order conditions

si +
∑
j∈f

(pj − cj)
∂sj
∂pi

= 0

Stacking these in matrix form givesΩ�


∂s1
∂p1

∂s2
∂p1

· · · ∂sN
∂p1

∂s1
∂p2

∂s2
∂p2

· · · ∂sN
∂p2...

...
...

∂s1
∂pN

∂s2
∂pN

· · · ∂sN
∂pN






p1 − c1

p2 − c2
...

pN − cN

 = −


s1

s2
...

sN


Under Assumption 1, Ω� S ′p is invertible, giving

p− c = −
(
Ω� S ′p

)−1
s

The Cournot model gives first-order conditions

pi − ci +
∑
j∈f

∂pj
∂si

sj = 0

or, stacking,

p− c = −
(

Ω�
[
∂p

∂s

]′)
s

Since p(·) = s−1,
[
∂p
∂s

]
= S−1p , and therefore the Cournot model gives markups

p− c = −
(

Ω�
(
S−1p

)′)
s

Note that the two models give very similar-looking markups, the difference being that for
Cournot markups, we invert S ′p before multiplying by Ω and for Bertrand markups, we
multiply by Ω before inverting.

It suffices to show the result for one firm’s products. Without loss, we can relabel products
so that each firm sells products numbered consecutively, so that Ω is a block diagonal matrix,
with firm 1 selling products 1 through m. Let A = −S ′p, so that markups are (Ω � A)−1s

for Bertrand and (Ω � A−1)s for Cournot. Note that (Ω � A)−1 and Ω � A−1 will both be
block diagonal matrices, with the blocks corresponding to products sold by the same firm.
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We will show that for i, j ∈ f (two products sold by the same firm and therefore nonzero
elements of these matrices), [Ω� A−1]i,j > [(Ω� A)−1]i,j > 0, from which (since s > 0) the
result follows.

We begin by establishing a decomposition of the matrix A = −S−1p .

Claim 1. Under Assumption 1, the matrix A can be written as a matrix product A = LU ,
where L is an N × N lower-triangular matrix with positive diagonal terms and negative
below-the-diagonal terms and U is an N ×N upper-triangular matrix with positive diagonal
terms and negative above-the-diagonal terms.

Theorem 2.5.3 in Horn and Johnson (1994) (pp. 114-115) establishes that A is an M-
matrix. (A ∈ Zn, since it has negative off-diagonal elements. A′ = −Sp is strictly row
diagonally dominant and has positive diagonal elements, so (by 2.5.3.13) A′ is an M-matrix,
so A is as well.) It then follows (by 2.5.3.9) that it can be written as a matrix product
A = LU , where L is lower-triangular, U is upper-triangular, and both have strictly positive
diagonal elements.

That the below-diagonal terms of L and the above-diagonal terms of U are negative
requires a separate proof (and in fact is the second Exercise on page 117 of Horn and Johnson
(1994)). Suppose this were not true. List the off-diagonal terms in the following order:

(zn) = (L2,1, U1,2, L3,1, L3,2, U1,3, U2,3, L4,1, L4,2, L4,3, U1,4, U2,4, U3,4, L5,1, . . .)

(That is, begin with the second row of L, then the second column of U , then the third row
of L, the third column of U , and so on, omitting the diagonal and above-diagonal elements
of L and the diagonal and below-diagonal elements of U .) Letting sign superscripts denote
matrix elements whose sign is already known, note that since A(−)

2,1 = L2,1U
(+)
1,1 , we know that

L2,1 < 0, and similarly U1,2 < 0 because A
(−)
1,2 = L

(+)
1,1 U1,2.

Find the first element in the list zn which is non-negative. First, suppose it is an element
of L. This means that for some (i, j) with i > j, Li,j ≥ 0, but Li,j

′ < 0 for j′ < j, Li
′
,j
′ < 0

for i′ < i, and Ui
′
,j
′ < 0 for j′ < i. Note that

A
(−)
i,j =

N∑
k=1

Li,kUk,j =

j∑
k=1

Li,kUk,j =

j−1∑
k=1

L
(−)
i,k U

(−)
k,j + Li,jU

(+)
j,j

requiring Li,j < 0, a contradiction. Similarly, if the first nonnegative element of zn is an
element of U , Ui,j ≥ 0 while Ui

′
,j < 0 for i′ < i, Ui

′
,j
′ < 0 for j′ < j, and Li

′
,j
′ < 0 for i′ ≤ j.
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This time, i < j, so

A
(−)
i,j =

N∑
k=1

Li,kUk,j =
i∑

k=1

Li,kUk,j =
i−1∑
k=1

L
(−)
i,k U

(−)
k,j + L

(+)
i,i Ui,j

requiring Ui,j < 0, a contradiction. Thus, there can be no first nonnegative element of the list
(zn), so all below-diagonal elements of L, and all above-diagonal elements of U , are strictly
negative.

Claim 2. Under Assumption 1, A = LU , L−1 is a lower-triangular matrix with all diagonal
and below-diagonal elements strictly positive, and U−1 is an upper-triangular matrix with all
diagonal and above-diagonal elements strictly positive.

Let R = L−1, so that
L1,1

L2,1 L2,2

...
... . . .

LN,1 LN,2 · · · LN,N




R1,1 R1,2 · · · R1,N

R2,1 R2,2 · · · R2,N

...
... . . . ...

RN,1 RN,2 · · · RN,N

 =


1 0 · · · 0

0 1 · · · 0
...

... . . . ...

0 0 · · · 1


Note that R1,1 = 1/L1,1 and R1,k = 0 for k > 1; then R2,2 = 1/L2,2 and R2,k = 0 for k > 2,
and so on, so R is lower triangular with strictly positive diagonal terms,

L
(+)
1,1

L
(−)
2,1 L

(+)
2,2

...
... . . .

L
(−)
N,1 L

(−)
N,2 · · · L

(+)
N,N




R

(+)
1,1

R2,1 R
(+)
2,2

...
... . . .

RN,1 RN,2 · · · R
(+)
N,N

 =


1 0 · · · 0

0 1 · · · 0
...

... . . . ...

0 0 · · · 1


Suppose there was some i, j with i > j such that Ri,j ≤ 0, and assume without loss that
(i, j) is the first such occurrence (again listing elements by row). Then

0 = Ii,j =
N∑
k=1

Li,kRk,j =
i∑

k=j

Li,kRk,j =
i−1∑
k=j

L
(−)
i,k R

(+)
k,j + L

(+)
i,i Ri,j

(The third equality is because Rk,j = 0 for k < j and Li,k = 0 for k > i.) If Ri,j ≤ 0, then
the right-hand side would be strictly negative; so Ri,j > 0, giving a contradiction. So L−1 is
lower-triangular with all strictly positive diagonal and below-diagonal terms; the analogous
argument establishes U−1 upper-triangular with strictly positive diagonal and above-diagonal
terms.
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Claim 3. For i, j ≤ |f |, (Ω� A−1)i,j > (Ω� A)−1i,j > 0.

Let m = |f |, so firm 1 sells the first m products. Since A = LU , A−1 = U−1L−1. We
established above that U−1i,k is 0 for k < i and strictly positive for k ≥ i, and L−1k,j is 0 for
k < j and strictly positive for k ≥ j, so

A−1i,j =
N∑
k=1

U−1i,k L
−1
k,j =

N∑
k=max{i,j}

U−1i,k L
−1
k,j

where each term in the latter sum is strictly positive. For i, j ≤ m, Ωi,j = 1 and therefore

(Ω� A−1)i,j =
N∑

k=max{i,j}

U−1i,k L
−1
k,j

For any matrix M , let M̂ denote the m×m leading principal submatrix of M , i.e., the
submatrix consisting of the first m rows and columns of M . Since block-diagonal matrices
invert block by block, ̂(Ω� A)−1 = (Â)−1. It’s easy to establish that Â = L̂Û and therefore
Â−1 = Û−1L̂−1. As a result, for i, j ≤ m,

(Ω� A)−1i,j =
m∑
k=1

U−1i,k L
−1
k,j =

m∑
k=max{i,j}

U−1i,k L
−1
k,j <

N∑
k=max{i,j}

U−1i,k L
−1
k,j = (Ω� A−1)i,j

giving the result. 2

10


	Introduction
	Model and Result
	Environment
	Bertrand-Nash (Price-Setting) Competition
	Cournot (Quantity-Setting) Competition
	Result

	Discussion
	Acknowledgements

